
Order And Algorithm Analysis: A Concise

Introduction

c©2003 Steven Louis Davis
Copyright c©2003

ii

Contents

1 Mathematical Preliminaries 1
1.1 Logs . 2
1.2 Derivatives . 4
1.3 Limits . 6

1.3.1 0-limits of nonnegative non-increasing sequences 6
1.3.2 Limits and Logs . 6
1.3.3 Limits and Derivatives . 7

1.4 Combinatorics . 9
1.5 Graph Theory . 11

1.5.1 Trees . 12
1.5.2 Representation in Code 13

1.6 Probability . 15
1.6.1 Mathematical Expectation 15
1.6.2 Change of Variable . 15

1.7 Sums . 16
1.8 Induction . 18

I Order 21

2 Order Comparison 23
2.1 Equivalent Order . 30
2.2 Inferior Order . 35
2.3 Non-Strict Order . 38
2.4 Traditional Notation . 40
2.5 Bounding Techniques . 42
2.6 Delay and Invariance . 44
2.7 Order Hierarchy . 45

2.7.1 Polylogs and Powers . 46
2.7.2 Iterated Log Subhierarchy 49
2.7.3 Polynomials and Exponentials 51
2.7.4 Exotic Order Comparisons 52
2.7.5 Ackerman’s Function . 54
2.7.6 Collected Comparisons . 56

iii

iv

2.8 Existence of the Laplace Transform 57

II Algorithm Analysis 63

3 Time Complexity Analysis 65
3.1 Average Case Time Complexity Analysis 65

4 Greedy Selection 69
4.1 Single Source Shortest Paths . 69

4.1.1 Dijkstra’s Algorithm . 70
4.2 Minimal Spanning Trees . 71

4.2.1 Prim’s Algorithm . 71
4.2.2 Kruskals’s Algorithm . 72

5 Dynamic Programming 75
5.1 Recursively Defined Solutions . 75
5.2 Calculating Combinations . 75
5.3 Shortest Paths Revisited . 80
5.4 Traveling Salesman Problem . 81
5.5 Order of Sequenced Matrix Multiplication 83

6 Divide and Conquer 95
6.1 Constructive Induction . 98
6.2 Fast Exponentiation . 107
6.3 Sorting Arrays . 110

6.3.1 Mergesort . 110
6.3.2 Selectionsort . 112
6.3.3 Quicksort . 112
6.3.4 Heapsort . 117

6.4 Simplifying Recurrences . 120
6.5 Fast Fourier Transform . 122

6.5.1 The Discrete Fourier Transform 122
6.5.2 The Fast DFT Algorithm 124

6.6 Exploiting Associations with Recursion 126
6.6.1 Large Integer Arithmetic 127
6.6.2 Strassens Matrix Multiplication 132

III Appendices 139

A Mathematical Reference 141
A.1 Discrete Fourier Transform . 142
A.2 Binomial Coefficients . 144
A.3 More Sums . 151

A.3.1 Polygeometric Sums . 151
A.4 Limits of Sums . 155

v

B General Solution of Elementary Recurrences 157
B.1 Terminal Compositions . 157
B.2 General Solution Of Elementary Recurrences 160
B.3 Further Applications . 168

C More Fibonacci Algorithms 171

vi

Contents

vii

viii

Chapter 1

Mathematical Preliminaries

1

2 c©2003 Steven Louis Davis

1.1 Logs

Logarithms are of fundamental importance in the expression of functional orders
as they arise quite naturally in the study of computer algorithms. Though there
are several ways to define logarithms, nothing can be simpler than noting that
the log function is just the inverse of the corresponding (with respect to base)
exponential function. As a simple aid to remembering this definition it us useful
to keep in mind the defining principle that logs are exponents. Consider the
logarithmic equation:

y = logb(x).

To every logarithmic equation corresponds an exponential equation in the same
base, and by remembering the defining principle above we obtain

by = x

since we already know the base b, and the exponent is the log, which in the
logarithmic equation is y. The x takes its place on the right hand side being
the only one of the three quantities not already accounted for. For example
since 25 = 32, we have log2(32) = 5, the log being the exponent 5. Armed with
this basic understanding we can now derive the basic properties of logs by using
the corresponding properties of exponents. First, simplest, and perhaps most
important, we have

x = blogb(x)

by simply substituting for y in the exponential equation. It should also be clear
that logb(1) = 0 since the only possible value of y giving by = 1 is y = 0. We
now proceed to obtain the following:

logb(xy) = logb(x) + logb(y):

logb(xy) = logb(b
logb(x)blogb(y))

= logb(b
logb(x)+logb(y))

= logb(x) + logb(y)

logb

(
x
y

)
= logb(x)− logb(y):

logb

(
x

y

)
= logb

(
blogb(x)

blogb(y)

)
= logb(b

logb(x)−logb(y))
= logb(x)− logb(y)

Logs 3

logb

(
1
y

)
= − logb(y):

logb

(
1
y

)
= logb(1)− logb(y)

= 0− logb(y)

logb(xk) = k logb(x):

logb(x
k) = logb(xxk−1)

= logb(x) + logb(x
k−1)

= logb(x) + logb(x) + logb(x
k−2)

...
= logb(x) + logb(x) + · · ·+ logb(x)︸ ︷︷ ︸

k factors1

= k logb(x)

alogb(x) = xlogb(a):

alogb(x) = blogb(a
logb(x))

= blogb(x) logb(a)

= blogb(x
logb(a))

= xlogb(a)

logb(x) = logβ(x)

logβ(b) :

logβ(x) = logβ(blogb(x))

= logb(x) logβ(b)

Lastly, we call attention to the convention of denoting logarithms taken in
the natural base e (= 2.718 . . .) with the special name ln, that is,

ln(a) = loge(a).

Another convention is to denote the base 2 log by lg, that is,

lg(a) = log2(a).

1Though we have assumed k is an integer, the property holds also for real numbers.

4 c©2003 Steven Louis Davis

Table 1.1: Common Derivatives

f(n) f ′(n) example(s)

np pnp−1 d
dn [n3] = 3n2

an an ln(a) d
dn [2n] = 2n ln(2),

d
dn [en] = en

logb(n) 1
n ln(b)

d
dn [log2(n)] = 1

n ln(2) ,

d
dn [ln(n)] = 1

n

1.2 Derivatives

Being exclusively interested in non-decreasing monotonic (non oscillating) func-
tions dramatically reduces the types of functions encountered. For example we
have no need of trigonometric functions. The type of behavior exhibited by
algorithm time complexity functions is quite restrictive and appears to be con-
fined to logarithmic, polynomial, exponential, and factorial growth as well as
mixtures and generalizations of these. As we encounter very few different basic
functions, we can easily summarize the most commonly encountered derivatives
as collected in Table 1.1.
We most often encounter these basic functions mixed together in products and
compositions. Table 1.2 provides the formulae to handle these combinations.
The student familiar with elementary calculus will recognize these as the Prod-
uct and Chain Rules respectively.

Derivatives 5

Table 1.2: Product and Composition Formulae

f(n) f ′(n) examples

u(n)v(n) u′(n)v(n) + u(n)v′(n) d
dn [n log2(n)] = log2(n) + 1

ln(2) ,

d
dn [n22n] = 2n2n + n22n ln(2) = n2n(2 + n ln(2))

u(v(n)) u′(v(n))v′(n) d
dn [2n3

] = 2n3
ln(2)(3n2) = 3 ln(2)n22n3

,

d
dn [(2n + 1)2] = 2(2n + 1)(2) = 4(2n + 1),

d
dn [
√

3n4 + n + 2] = 1
2 (3n4 + n + 2)−

1
2 (12n3 + 1) = 1

2
√

3n4+n+2

6 c©2003 Steven Louis Davis

1.3 Limits

1.3.1 0-limits of nonnegative non-increasing sequences

By far the most common type of limit encountered is of the form

lim
n→∞

sn,

where (sn)∞n=1 is a non-increasing sequence of nonnegative real numbers. Of
these we are most often interested in those with limiting value of zero. For this
case we use the characterization that for any positive number c > 0, f(n) < c
for large enough n.

Example 1.1. lim
n→∞

1
n = 0

For c > 0, let n > d 1
c e. Then n > 1

c , so that 1
n < c.

Example 1.2. lim
n→∞

1
n2 = 0

For c > 0, let n > d 1√
c
e. Then n > 1√

c
, so that 1

n <
√

c, hence 1
n2 < c.

It should be clear from our characterization of 0-limits applied to these examples
that f(n) →∞2 exactly for

lim
n→∞

1
f(n)

= 0. (1.1)

Similarly, f(n) → 0 exactly when

lim
n→∞

1
f(n)

= ∞. (1.2)

To generalize, we could note that the continuity of the multiplicative inverse
says that f(n) → a ∈ (0,∞) exactly for

lim
n→∞

1
f(n)

=
1
a
. (1.3)

Now we could say that the first two limits 1.1, and 1.2 are just special cases of
1.3 thereby giving meaning to the conventions 1

∞ = 0, and 1
0 = ∞. Another

appeal to continuity establishes that for f(n) → c,

af(n) → ac.

1.3.2 Limits and Logs

Owing to its definition as the inverse of the exponential function, log functions
are also continuous, which means that for f(n) → c,

logb(f(n)) → logb(c).
2 f(n) → L is a convenient shorthand for limn→∞f(n) = L

Limits 7

The natural base e can itself be defined by a particular limit,

e = lim
n→∞

(
1 +

1
n

)n

.

You should use your calculator to appreciate this by using a large value for
n, say n = 109 in the expression

(
1 + 1

n

)n.

1.3.3 Limits and Derivatives

Our goal here is not to relate derivatives to the limits that define them but rather
to introduce a tool that makes the derivative incredibly useful in evaluating the
kinds of limits we will require for order comparisons. This tool is L’Hopital’s
rule which, restated for our purposes says that given functions f(n), g(n) where
the limit

lim
n→∞

f ′(n)
g′(n)

exists, then the limit

lim
n→∞

f(n)
g(n)

also exists and the two limits are the same.
In the comparison of algorithms, one is almost exclusively interested in limits

of the form:

lim
n→∞

f(n)
g(n)

which can sometimes be less than amenable to direct evaluation. By using
L’Hopitals rule and taking advantage of the sometimes simplifying property
of differentiation, these troublesome limits can often be coaxed to submit to
analysis.

Example 1.3. lim
n→∞

logb(n)
n = 0

lim
n→∞

logb(n)
n

L′

= lim
n→∞

1
n ln(b)

1

=
1

ln(b)
lim

n→∞

1
n

= 0

8 c©2003 Steven Louis Davis

Example 1.4. lim
n→∞

bn2

n3 = ∞

lim
n→∞

bn2

n3

L′

= lim
n→∞

bn2
ln(2)2n

3n2

=
2 ln(2)

3
lim

n→∞

bn2

n

L′

=
2 ln(2)

3
lim

n→∞

bn2
ln(2)2n

1

=
4 ln2(2)

3
lim

n→∞
nbn2

= ∞

Example 1.5. lim
n→∞

n2

bn = 0

lim
n→∞

n2

bn

L′

= lim
n→∞

2n

bn ln(b)

=
2

ln(b)
lim

n→∞

n

bn

L′

=
2

ln(b)
lim

n→∞

1
bn ln(b)

=
2

ln2(b)
lim

n→∞

1
bn

= 0

Combinatorics 9

1.4 Combinatorics

One often has occasion to choose sequences or subsets from a given finite set
of elements. Sequences differ from subsets in that an order is specified for the
elements of a sequence and not for the elements of a subset. For a given subset
there can be many sequences using that subset’s elements in different orders. For
example, consider the subset X = {2, 3, 7} of the superset S = {1, 2, 3, . . . , n}.
We can enumerate six distinct sequences using the elements of X:

s1 = (2, 3, 7)
s2 = (2, 7, 3)
s3 = (3, 2, 7)
s4 = (3, 7, 2)
s5 = (7, 2, 3)
s6 = (7, 3, 2).

It is a simple matter to count the number of sequences based on the size of
the subset of elements from which the sequences are constructed. For a given
subset of m elements, any of those m elements may be chosen as the first
element of the sequence. For each of these m first choices, any of the remaining
m− 1 elements may be chosen as the second element of the sequence giving
m(m− 1) possible choices for the first two elements. For any of these there are
m− 2 remaining elements from which to choose the third, m− 3 for the fourth,
and so on. Consequently we see that the number of different sequences, called
permutations, that can be chosen from a given set of m elements is m!. We are
also interested in the total number of m element permutations chosen over the
whole superset S. Since we already know that any m element subset contributes
m! permutations we need only know the number of different m element subsets
of S. Denoting the number of m element subsets, each called a combination, of
a set of n elements by C(n, m), and the number of m element permutations by
P (n, m), the number of m element permutations is therefore

P (n, m) = C(n, m)m!. (1.4)

Approaching the problem from another direction, if p is a permutation of m
elements of S, then by appending the remaining n−m elements in all possible
(n−m)! permutations gives all permutations of S beginning with the permuta-
tion p. Since there must be n! permutations of S we have n! = P (n, m)(n−m)!
and therefore

P (n, m) =
n!

(n−m)!
. (1.5)

By 1.4 we then have

C(n, m) =
n!

(n−m)!m!
. (1.6)

10 c©2003 Steven Louis Davis

In keeping with the more standard notation we henceforth refer to C(n, m) by
the symbol

(
n
m

)
and by the name binomial coefficient. These symbols are called

binomial coefficients due to the well known Binomial Theorem.

Theorem 1.4.1. (a + b)n =
∑n

k=0

(
n
k

)
an−kbk.

Proof. We offer a simple combinatorial explanation for proof. An inductive
proof is given in Theorem A.2.3. Considering the product (a+b)n as a sequence
of factors

(a + b)(a + b) . . . (a + b),

each term of the resulting product has n factors each of which is either a or b
depending on which was chosen. Letting k be the number of b factors chosen,
the number of a factors must be n− k and the resulting term is an−kbk. The
number of ways this particular term may arise is the number of ways to choose
k of the n factors (a + b) as those from which b was chosen for the term, that is(
n
k

)
. Thus all of the terms an−kbk contribute the expression

(
n
k

)
an−kbk to the

simplified product. As any number of b factors between k = 0 and k = n could
be chosen the simplified product has the form

n∑
k=0

(
n

k

)
an−kbk.

Several theorems on binomial coefficients are collected in the Mathematical
Reference A.2.

Graph Theory 11

1.5 Graph Theory

Elementary graph theory is a descriptive subset of combinatorics particularly
well suited to modeling many problems arising in computer science. A graph is
basically a network diagram consisting of labeled vertices, and weighted edges
between pairs of those vertices. Graphs represent relations on the set of vertices
where the edges are used to express related elements. Edges can be directed
from one vertex to another indicating non-reflexive relations or undirected for
reflexive relations. Transitivity of relations is naturally depicted as a path within
a graph. For simplicity we will concern ourselves only with undirected graphs.

More formally, we define a graph G of n vertices and m edges as a triple,

G = (V,E, W),

where

V = {1, 2, 3, . . . , n}

is the set of vertices,

E = {e1, e2, e3, . . . , em} ⊂ V × V

is the set of edges, and

W : E → [0,∞]

is the Weight Function. It is convenient to employ the notation |A| for the size
or cardinality of a set A, thus n = |V | and m = |E|. It is natural to represent
graphs with simple diagrams wherein the vertices are circles containing the
vertex number, edges are lines drawn between pairs of vertices, and the weight
function accounts for numeric labels on the edges. Figure 1.1 illustrates this
graphic representation.

The advantages of the diagrams are readily appreciated. Many problems call
for the extraction of a subgraph from a given graph. Given a graph G = (V,E,W),
a subgraph

G′ = (V ′, E′,W ′),

is a graph where

V ′ ⊂ V,

E′ ⊂ E ∩ (V ′ × V ′),

and

W ′ = W |E′×[0,∞].

12 c©2003 Steven Louis Davis

Example 1.6. G0 = ({1, 2, 3, 4}, {{1, 3}, {1, 4}, {2, 3}}, {({1, 3}, 2.1), ({1, 4}, 3), ({2, 3}, 1.5)}

&%
'$

1

&%
'$

2 &%
'$

3

&%
'$

4

@
@

@
@

@
@

@
@

@
@

@
@

@
@@

2.1

1.5

3

Figure 1.1: Graphic Representation for a Graph.

Here the restriction symbol | has been used to specify those elements of W
whose edges lie in E′. Note that every graph contains the empty subgraph. The
example contains many subgraphs some of which are listed in Figure 1.2.

The example in the figure shows a connected graph, that is, a graph for
which each pair of vertices enjoys a Path, or sequence of edges representing
the transitive chain relating the vertex pair. Paths are of primary importance
in graph theory, often being the objective for a particular type of problem
represented by a graph. It should be clear that a connected graph of n vertices
must have at least n− 1 edges. This is a minimal requirement for connectivity.
Also, any graph of exactly n− 1 edges can have no looping paths, a concept
more precisely defined later.

1.5.1 Trees

As trees abound in algorithms we make a few fundamental observations con-
cerning them here.

Graph Theory 13

G′
1 = {{1, 3, 4}, {{1, 3}, {1, 4}}{({1, 3}, 2.1), ({1, 4}, 3)}}

G′
2 = {{2, 3, 4}, {{2, 3}}, {({2, 3}, 1.5)}}

G′
3 = {{1, 2}, ∅, ∅}

G′
4 = ∅

Figure 1.2: A Few Subgraphs of G0

Definition 1.5.1. A tree is a minimally connected graph.

As noted above a tree is a connected graph of n vertices and exactly n− 1
edges. Many important problems require the extraction of a tree from a con-
nected graph. Such subgraphs are normally referred to as Spanning Trees. A
rooted tree is a pair R = (T, v0) where T = (V,E, W) is a minimally connected
graph and v0 ∈ V . Accordingly, to any n-vertex tree can be associated n rooted
trees. The height of a rooted tree is the maximum length over all paths in the
tree having the root vertex as an endpoint. Thus a tree consisting of a single
vertex has height zero. A non-root vertex which is an element of only one edge
is called a leaf. A non-root vertex is a child of the vertex to which it is connected
on the path from that vertex to the root vertex. A balanced tree is a rooted
tree having no paths from the root to leaf vertices of height less than h− 1 for
a tree of height h. A binary tree is a rooted tree in which each non-root vertex
can be an element of one, two, or three edges, while the root can be an element
of one or two edges. For each non-root vertex, of the possible three edges, the
edges not leading to the root vertex point to the child vertices. The first such
edge, if it exists, is connected to the vertex’s left child whild the second edge,
again if it exists, is connected to the vertex’s right child. This designation is
only of notational convenience and reflects the convention of labeling vertices
from left to right in planar representations of trees. A balanced binary tree is
left-balanced if all of its leaves at height h occur in a contiguous group at the
left of the tree, that is as children of an unbroken group of left-most vertices all
of whom, with the possible exception of the right-most, have both children. In
the exceptional case, the right-most of the group of vertices can have a single
left-child. Given an ordered set of keys, (K,≤), a tree T of elements from K is
a heap if for every subtree T ′ of T , the root of T ′ is maximal within T ′.

1.5.2 Representation in Code

Graphs in general are easily encoded in two-dimensional arrays. Given a graph
G = (V,E, W) with n = |V |, we define the Adjacency Matrix for G as the tabular
representation of its weight function W . Thus the adjacency matrix for Figure
1.1 is given in Figure 1.3.

Since each edge in an undirected graph is equivalent to two edges in a directed
graph one sees that the adjacency matrix of an undirected graph is necessarily

14 c©2003 Steven Louis Davis

W 1 2 3 4

1 0 ∞ 2.1 3

2 ∞ 0 1.5 ∞

3 2.1 1.5 0 ∞

4 3 ∞ ∞ 0

Figure 1.3: Adjacency Matrix Representation of a Graph

symmetric, or put another way, unless the adjacency matrix is symmetric the
graph is not undirected, having at least one edge between two vertices that is
not reversed. Since we will deal here only with undirected graphs we prefer to
represent the adjacency matrix with only its upper half, that is, above the main
diagonal. The desired representation for the last adjacency matrix is then given
in Figure 1.4. Since the diagonal holds no information that cannot be inferred
it is also omitted.

W 2 3 4

1 ∞ 2.1 3

2 1.5 ∞

3 ∞

Figure 1.4: Preferred Adjacency Matrix Representation For Undirected Graph

Another important encoding is available for left-balanced binary trees. In
fact, any left-balanced binary tree can be mapped directly onto an array. If T
is a left-balanced binary tree of n elements, then the root is stored in an array
AT at index 0. Given an element t of T stored at a particular location i of the
array, locate the left child of t = A[i] at position 2i + 1 and the right child at
position 2n + 2. Then A[0..n− 1] stores the tree in breadth-first order.

Probability 15

1.6 Probability

1.6.1 Mathematical Expectation

For a discrete random variable X with values {X1, X2, . . . , Xi, . . . }i∈I we define
the expectation E(X) as the weighted average

E(X) =
∑
i∈I

XiP (X = Xi),

where P (X = Xi) is the probability that the random variable X assumes the
value Xi. For X taking on the finite set of values 1, 2, 3, . . . , n, this becomes:

E(X) =
n∑

i=1

iP (X = i).

1.6.2 Change of Variable

When it is easier to use a function of a random variable than to use the random
variable directly, the following theorem can be used to compute expectations.

Theorem 1.6.1. If X and Y are random variables and f is a function such
that X = f(Y), then E(X) = E(f(Y)).

In the case of discrete random variables X and Y , with sets of values
{Xi : i ∈ I}, and {Yj : j ∈ J} respectively, this becomes

∑
i∈I

XiP (X = Xi) = E(X)

= E(f(Y))

=
∑
j∈J

f(Yj)P (Y = Yj)

For Y taking on the finite set of values 1, 2, 3, . . . ,m, this becomes:

E(X) = E(f(Y))

=
∑
j∈J

f(Yj)P (Y = Yj)

=
m∑

j=1

f(j)P (Y = j)

16 c©2003 Steven Louis Davis

1.7 Sums

In our investigations several elementary sums will occur with some regularity.

Theorem 1.7.1.
∑m

i=1 i = 1
2m(m + 1)

Proof. Let S denote the sum. Then

2S =
m∑

i=1

i +
m∑

i=1

(m + 1− i)

=
m∑

i=1

(m + 1)

= m(m + 1)

Lemma 1.7.1.
∑m

i=1 iai =
∑m

i=1

∑m
j=i aj =

∑m
i=1

(∑m
j=1 aj −

∑i−1
j=1 aj

)
Theorem 1.7.2.

∑m
i=1 i2 = 1

6m(m + 1)(2m + 1)

Proof. Let S denote the sum. Using Theorem 1.7.1 and Lemma 1.7.1 we have

S =
m∑

i=1

m∑
j=i

j

=
m∑

i=1

 m∑
j=1

j −
i−1∑
j=1

j


=

m∑
i=1

(
1
2
m(m + 1)− 1

2
(i− 1)i

)

=
1
2

[
m2(m + 1)−

m∑
i=1

i2 +
m∑

i=1

i

]

=
1
2

[
m2(m + 1)− S +

1
2
m(m + 1)

]
After some rearrangement we obtain

6S = 2m2(m + 1) + m(m + 1)
= m(m + 1)(2m + 1)

Theorem 1.7.3 (Geometric Partial Sum).
∑m

i=0 ai = am+1−1
a−1

Sums 17

Proof. Let S denote the sum. Then

(a− 1)S = aS − S

= a
m∑

i=0

ai −
m∑

i=0

ai

=
m∑

i=0

ai+1 −
m∑

i=0

ai

= am+1 +
m−1∑
i=0

ai+1 −
m∑

i=0

ai

= am+1 +
m∑

j=1

aj −
m∑

i=0

ai

= am+1 − 1

Theorem 1.7.4 (Polygeometric Sum).
∑m

i=1 i2i = (m− 1)2m+1 + 2

Proof. Using the Lemma and Theorem 1.7.3 we have

m∑
i=1

i2i =
m∑

i=1

m∑
j=i

2j

=
m∑

i=1

 m∑
j=0

2j −
i−1∑
j=0

2j


=

m∑
i=1

(
2m+1 − 1− [2i − 1]

)
= m2m+1 −

m∑
i=1

2i

= m2m+1 −

(
m∑

i=0

2i − 1

)
= m2m+1 −

(
2m+1 − 1− 1

)
= (m− 1)2m+1 + 2

Higher order sums such as 1.7.4 can be constructed using some tricks from
calculus as shown in section A.3.1.

18 c©2003 Steven Louis Davis

1.8 Induction

Occasionally we rely on a particularly powerful proof technique which can be
used to establish properties on an ordered set. It will be sufficient for our pur-
poses to deal with propositions on the set of positive integers though the tech-
nique is valid in a much broader context. We state without proof the induction
theorem.

Theorem 1.8.1. Given a property Pk which may be stated for any integer k, If
Pk0 is true and if the truth of Pk implies the truth of Pk+1 where k ≥ k0, then
Pk is true for all k ≥ k0.

This form of the induction theorem uses what is called the weak inductive
hypothesis. An alternative but completely equivalent statement using the strong
inductive hypothesis is:

Theorem 1.8.2. Given a property Pk which may be stated for any nonnegative
integer k, If Pk0 is true and if the assumption that ∀i ∈ {k0, . . . , k}, Pi is true
implies the truth of Pk+1, then Pk is true for all k ≥ k0.

Example 1.7.
∑m

i=1 i2i = (m− 1)2m+1 + 2
First we note that equality holds for the base case of m = 1. Now assume∑k

i=1 i2i = (k − 1)2k+1 + 2 for k ≥ 1. Then

k+1∑
i=1

i2i = (k + 1)2k+1 +
k∑

i=1

i2i

= (k + 1)2k+1 + (k − 1)2k+1 + 2

= [(k + 1) + (k − 1)]2k+1 + 2

= 2k2k+1 + 2

= k2k+2 + 2

= [(k + 1)− 1]2(k+1)+1 + 2

By Theorem 1.8.1 we have established the sum for any m.

Example 1.8. Using formula 1.6 as the definition for
(
n
k

)
,(

n

k

)
=

{(
n−1

k

)
+
(
n−1
k−1

)
, 0 < k < n

1 , k ∈ {0, n}

For the base case n = 1 the new formula agrees since 1!
0! = 1!

1! = 1,
(
0
1

)
= 0, and(

1
0

)
= 1. Now assume that n!

k!(n−k!) =
(
n
k

)
for n ≥ 1, that is that

n!
k!(n− k!)

=
(

n− 1
k

)
+
(

n− 1
k − 1

)
.

Then

Induction 19

(
n

k

)
+
(

n

k − 1

)
=

n!
k!(n− k!)

n− k + 1
n− k + 1

+
n!

(k − 1)!(n− k + 1!)
k

k

=
n!

k!(n− k + 1)!
[n− k + 1 + k]

=
(n + 1)!

k!(n + 1− k!)

=
(

n + 1
k

)
.

20 c©2003 Steven Louis Davis

I

Order

21

Chapter 2

Order Comparison

Two solutions for the problem of Fibonacci number generation are used first, to
illustrate the dramatic differences between correct solutions to the same prob-
lem, and second, to show how difficult a manual head-to-head fair comparison
of running times can be without the aid of the ideas of algorithm analysis.

Consider the problem of generating the nth Fibonacci number given a non-
negative integer n, n → Fn, where

Fn =

{
Fn−1 + Fn−2 , n > 1
n , n = 0, 1

.

The following two algorithms, fib1 and fib2 (Figure 2.1), are both correct, al-
though quite different, solutions for this problem.

int fib1(int n){
if(n<2)

return n;
else {

int x=0,y=1;
for(int i=1;i<n;i++){

y=x+y;
x=y-x;}

return y;}}

int fib2(int n){
if(n<2)

return n;
else

return fib1(n-1)+fib1(n-2);}

Figure 2.1: Fibonacci Algorithms

23

24 c©2003 Steven Louis Davis

To attempt a comparison of the two algorithms we introduce the notion of the
number X of instructions executed by the algorithm when run with a particular
input n. We emphasize the dependence on both the algorithm and the language
used to implement the algorithm. Thus for the first algorithm we have

X[fib1,C](n) = 4 + (n− 1) · 2 = 2n + 2, (n > 1).

Here we have counted the variable declarations and the return each as one
instruction each and the body of the loop as two instructions. This might lead
to some differences of opinion as to how instructions should be counted. Perhaps
the initialization within the loop declaration and both the loop test and loop
variable increment should have been counted as well giving the following:

X[fib1,C](n) = 5 + (n− 1) · 4 = 4n− 1, (n > 1).

This apparent ambiguity may lead us to use a finer language for algorithm
expression. Using the gcc compiler to produce assembly code for a Sun SPARC,
we obtain the assembly code in Figure 2.2 from fib1.c.
After some inspection of actual instructions executed we now come up with
something like

X[fib1,SPARC](n) = 28 + (n− 1) · 16.

If we are to compare the two algorithms we need to find the corresponding
quantity X[fib2,SPARC](n). After compilation of fib2.c we obtain the assembly
code in Figure 2.3.
The recursive character of the routine makes it much more difficult to count
steps. Counting yields

X[fib2,SPARC](n) = 11 + (C(n)− 1) · 20 = 20C(n)− 9,

where C(n) is the number of function calls. We will satisfy ourselves with a lower
bound for C(n) using induction. For n = 0, 1 we have C(n) = 1, 2

0−1
2 = 1√

2
,

and 2
1−1
2 = 1, hence C(n) > 2

n−1
2 in both cases. Invoking the strong inductive

hypothesis for k < n we have

C(n) > C(n− 1) + C(n− 2)

> 2
(n−1)−1

2 + 2
(n−2)−1

2

= 2
n−2

2 + 2
n−3

2

> 2
n−3

2 + 2
n−3

2

= 2 · 2
n−3

2

= 21+ n−3
2

= 2
n−1

2

Order Comparison 25

.file "fib1.c"
gcc2_compiled.:
.section ".text"

.align 4

.global f1

.type f1,#function

.proc 04
f1:

!#PROLOGUE# 0
save %sp,-128,%sp
!#PROLOGUE# 1
st %i0,[%fp+68]
ld [%fp+68],%o0
cmp %o0,1
bg .LL2
nop
ld [%fp+68],%o0
mov %o0,%i0
b .LL1
nop
b .LL3
nop

.LL2:
st %g0,[%fp-20]
mov 1,%o0
st %o0,[%fp-24]
mov 1,%o0
st %o0,[%fp-28]

.LL4:
ld [%fp-28],%o0
ld [%fp+68],%o1
cmp %o0,%o1

bl .LL7
nop
b .LL5
nop

.LL7:
ld [%fp-24],%o0
ld [%fp-20],%o1
add %o0,%o1,%o0
st %o0,[%fp-24]
ld [%fp-24],%o0
ld [%fp-20],%o1
sub %o0,%o1,%o0
st %o0,[%fp-20]

.LL6:
ld [%fp-28],%o0
add %o0,1,%o1
st %o1,[%fp-28]
b .LL4
nop

.LL5:
ld [%fp-24],%o0
mov %o0,%i0
b .LL1
nop

.LL3:

.LL1:
ret
restore

.LLfe1:
.size f1,.LLfe1-f1
.ident

"GCC: (GNU) 2.8.1"

Figure 2.2: Assembly Code for Fib1

26 c©2003 Steven Louis Davis

.file "fib2.c"
gcc2_compiled.:
.section ".text"

.align 4

.global f2

.type f2,#function

.proc 04
f2:

!#PROLOGUE# 0
save %sp,-112,%sp
!#PROLOGUE# 1
st %i0,[%fp+68]
ld [%fp+68],%o0
cmp %o0,1
bg .LL2
nop
ld [%fp+68],%o0
mov %o0,%i0
b .LL1
nop
b .LL3
nop

.LL2:
ld [%fp+68],%o0
add %o0,-1,%o1
mov %o1,%o0
call f1,0
nop
mov %o0,%l0
ld [%fp+68],%o0
add %o0,-2,%o1
mov %o1,%o0
call f1,0
nop
mov %o0,%o1
add %l0,%o1,%o0
mov %o0,%i0
b .LL1
nop

.LL3:

.LL1:
ret
restore

.LLfe1:
.size f2,.LLfe1-f2
.ident

"GCC: (GNU) 2.8.1"

Figure 2.3: Assembly Code for Fib2

Order Comparison 27

Now that

X[fib2,SPARC](n) > 20 · 2
n−1

2 − 9

is established, the two algorithms can be compared. To find the time TA(n),
required for a particular algorithm A, we simply multiply the executed instruc-
tion count X[A,machine](n) by the number r of machine cycles per instruction
and by the inverse of s, the processor speed,

TA(n) = X[A,machine](n)(r/s).

Assuming the SPARC processor in use runs at 500MHz and that machine in-
structions require 2 cycles, we obtain

Tfib1(n) = X[fib1,SPARC](n)(2)(
1

500000000
)

=
4n− 1

250000000

Tfib2(n) = X[fib2,SPARC](n)(2)(
1

500000000
)

>
20(
√

2)n−1 − 9
250000000

We now choose a modest value for n, say n = 99, giving:

Tfib1(n) =
4 · 99− 1
250000000

= 1.58× 10−6 (sec.)

Tfib2(n) >
20(
√

2)98 − 9
250000000

= 1.13× 1016 (sec.)
= 357 million years.

We begin to appreciate the vast difference between multiple correct solutions
for a given problem.

For our next problem consider integer exponentiation; that is, given a base
b and a non-negative integer exponent n, find an algorithm for computing bn.
We again supply two correct solutions, exp1, and exp2 (Figure 2.4) which will
have vastly differing character in terms of running time.
The student new to exp2 should note that it computes 215 as shown in Figure
2.5, using recursion to move from larger to smaller powers. This algorithm will
be presented again later in the text.

Now we count steps for both algorithms. For exp1 we shall settle on

Xexp1,C(n) = 3n + 2, (2.1)

28 c©2003 Steven Louis Davis

float exp1(float b,int n){
float p=1.0;
while(n>0){

p=p*b;
n--;}

return p;}

float exp2(float b,int n){
if(n==0)

return 1.0;
float p=exp2(b,n/2);
p=p*p;
if(n%2)

p=p*b;
return p;}

Figure 2.4: Integer Exponentiation Algorithms

215 = 2 · 214

= 2 · (27)2

= 2 · (2 · 26)2

= 2 · (2 · (23)2)2

= 2 · (2 · (2 · 22)2)2

Figure 2.5: Fast Integer Exponentiation

while for exp2 we have

Xexp2,C(n) = 5 + C(n),

where again we will not quibble over the number 5 (some may have counted 4
and others 6), and C(n) again represents the number of recursive calls. To find
C(n) we will do what some mathematicians call following the rabbit and write

Order Comparison 29

C(n) = 5 + C
(n

2

)
= 5 + 5 + C

(n
2

2

)
= 5 + 5 + 5 + C

(n
2
2

2

)
...

= 5k + C
(n

2k

)
We now reason that eventually n/2k will reach 1 at which point we are

finished. Assuming the value C(1) = 6, the time for the call to the n = 0 case
plus the test for n = 0, we have

C(n) = 5k + 6.

However as n/2k = 1 we have k = log2(n) hence

Xexp2,C(n) = 5 + 5k + 6 = 5 log2(n) + 11. (2.2)

How do the numbers of steps differ chaning from the computation bn to b2n?
For exp1, one as Xexp1,C(2n) = 3(2n) + 2 = 6n + 2, which for large n is approx-
imately double Xexp1,C(n). On the other hand

Xexp2,C(2n) = 5 log2(2n) + 11 = 5 log2(n) + 12

which is only one more step than Xexp2,C(n). Clearly exp2 has a dramatic
advantage. This can be seen by graphically comparing the running times for
exp1 and exp2.

30 c©2003 Steven Louis Davis

2.1 Equivalent Order

From our analysis of fibonacci algorithms we have seen that the counts of in-
structions executed depends a great deal on the language used to implement the
algorithm. We have also seen that making an instruction count is quite tedious
and time consuming. If we are to compare algorithms we would prefer some
system that does not need to take language detail into account; some measure
should be characteristic of the algorithm itself irrespective of implementation
language. If we compare the instruction counts for the same algorithm and dif-
ferent languages there is an obvious similarity between them. For fib1, and fib2
we obtained

X[fib1,C](n) = 2n + 2
X[fib1,SPARC](n) = 4n− 1

and,
X[fib2,SPARC](n) = 20(

√
2)n + 11.

We might generalize and say that no matter what the language, the executed
instruction counts for fib1 and fib2 will always be of the form:

X[fib1,−](n) = c1n + c2

X[fib2,−](n) = c3b
n + c4

The difference in language seems only to account for changes in the constants
in the general formulation. We therefore agree to disregard such constant dif-
ferences. Since the time is obtained from the executed instruction count by
multiplying by more constants, we are contented that the algorithms are prop-
erly characterized by these generalized instruction counts for purposes of com-
parison. We have thus decided to formulate our notion of time complexity in
such a way as to be able to say that f(n) = 4n + 3 and g(n) = 13n + 11 are
somehow the same. And for f(n) = 2(

√
2)n + 1 and g(n) = 20(

√
2)n + 11, we

declare that f and g are equivalent.

Definition 2.1.1. Two nonnegative functions f and g have the same order
(written f ' g) if the sequence

(
f(n)
g(n)

)∞
n=1

of quotients has finite non-zero supe-
rior and inferior subsequential limits; that is if[

lim inf
n→∞

f(n)
g(n)

, lim sup
n→∞

f(n)
g(n)

]
⊂ (0,∞).

If the limit of the quotient exists (which will usually be the case in our studies)
then a simpler definition suffices:

Definition 2.1.2. Two nonnegative functions f and g have the same order
(written f ' g) if the limit of the quotient of f and g as n →∞ is a positive

Equivalent Order 31

real number; that is,

lim
n→∞

f(n)
g(n)

∈ (0,∞).

Since the inversion of a positive real number is still a positive real number, we
see that f ' g if and only if g ' f . When we examine our instruction counts,
this definition appears to do exactly what we need.

Example 2.1. 4n− 1 ' 2n + 2

lim
n→∞

4n− 1
2n + 2

= lim
n→∞

4n−1
n

2n+2
n

= lim
n→∞

4− 1
n

2 + 2
n

= 2 ∈ (0,∞)

Example 2.2. 2n + 2 ' 4n− 1

lim
n→∞

2n + 2
4n− 1

= lim
n→∞

2n+2
n

4n−1
n

= lim
n→∞

2 + 2
n

4− 1
n

=
1
2
∈ (0,∞)

Example 2.3. 2(
√

2)n + 1 ' 20(
√

2)n + 11

lim
n→∞

2(
√

2)n + 1
20(
√

2)n + 11
= lim

n→∞

2(
√

2)n+1

(
√

2)n

20(
√

2)n+11

(
√

2)n

= lim
n→∞

2 + 1
(
√

2)n

20 + 11
(
√

2)n

=
1
10

∈ (0,∞)

32 c©2003 Steven Louis Davis

Example 2.4. 2(
√

2)n + 1 6' 2n + 2

lim
n→∞

2(
√

2)n + 1
2n + 2

= lim
n→∞

2(
√

2)n+1
n

2n+2
n

= lim
n→∞

2(
√

2)n

n + 1
n

2 + 2
n

=
1
2

lim
n→∞

(
√

2)n

n

L′

=
1
2

lim
n→∞

(
√

2)n ln(2)
1

=
ln 2
2

lim
n→∞

(
√

2)n

= ∞ 6∈ (0,∞)

Example 2.5. 2n + 2 6' 2(
√

2)n + 1

lim
n→∞

2n + 2
2(
√

2)n + 1
= lim

n→∞

2n+2
n

2(
√

2)n+1
n

= lim
n→∞

2 + 2
n

2(
√

2)n

n + 1
n

= 2 lim
n→∞

n

(
√

2)n

L′

= 2 lim
n→∞

1
(
√

2)n ln(2)

=
2

ln 2
lim

n→∞

1
(
√

2)n

= 0 6∈ (0,∞)

Example 2.6. 3n2 + 1 ' 1
100n2 + n

lim
n→∞

3n2 + 1
1

100n2 + n
= lim

n→∞

3 + 1
n2

1
100 + 1

n

= 300 ∈ (0,∞)

The next example involving logs may seem somewhat surprising.

Equivalent Order 33

Example 2.7. ln(x2 + 1) ' ln(x) Using L’Hopital’s rule we have

lim
n→∞

ln(x2 + 1)
ln(x)

L′

= lim
n→∞

2x
x2+1

1
x

= lim
n→∞

2x2

x2 + 1

= lim
n→∞

2
1 + 1

x2

= 2

It should be clear that for any function f , f ' f since

lim
n→∞

f(n)
f(n)

= 1 ∈ (0,∞).

It should also be clear that for constants c1, c2, c3, c4 > 0, that

c1n
2 + c2f(n) ' c3n

2 + c4g(n)

as long as both f(n) ≤ n2 and g(n) ≤ n2, for then

0 ≤ lim
n→∞

c1n
2 + c2f(n)

c3n2 + c4g(n)

= lim
n→∞

c1 + c2
f(n)
n2

c3 + c4
g(n)
n2

≤ c1 + c2

c3
∈ (0,∞)

In particular, for c3 = 1 and g = 0 we have

c1n
2 + c2f(n) ' n2.

Thus n2 is the simplest representative of functions of its order. This whole
process could of course have been done with any function h(n) rather than n2

which tells us that our new notion of order is taken from the most significant
part of the expression. That is, if h(n) = cf(n) + g(n) where g ≤ f , then the
order of h is f and we would write h ' f . It is also true that equivalence of is
transitive.

Theorem 2.1.1. If f ' g and g ' h, then f ' h.

Proof. Assuming the limits exist, let l1, l2 be the limits of f(n)
g(n) and g(n)

h(n) respec-

34 c©2003 Steven Louis Davis

tively. Then l1, l2 ∈ (0,∞) and

lim
n→∞

f(n)
h(n)

= lim
n→∞

f(n)
h(n)

g(n)
g(n)

= lim
n→∞

f(n)
g(n)

g(n)
h(n)

= lim
n→∞

f(n)
g(n)

lim
n→∞

g(n)
h(n)

= l1l2 ∈ (0,∞)

For the general case, if the limit suprema L1, L2 are both finite, then

lim sup
n→∞

f(n)
h(n)

= lim sup
n→∞

f(n)
h(n)

g(n)
g(n)

= lim sup
n→∞

f(n)
g(n)

g(n)
h(n)

≤ lim sup
n→∞

f(n)
g(n)

lim sup
n→∞

g(n)
h(n)

= L1L2 < ∞

Similarly, if the limit infima l1, l2 are both non-zero, then

lim inf
n→∞

f(n)
h(n)

≥ lim inf
n→∞

f(n)
g(n)

lim inf
n→∞

g(n)
h(n)

= l1l2 > 0

Finally, order is preserved by multiplication.

Theorem 2.1.2. f
g ' h if and only if f ' gh.

Inferior Order 35

2.2 Inferior Order

Definition 2.2.1. For nonnegative functions f and g, f is of inferior order to
g (written f ≺ g) if the limit of the quotient of f and g as n →∞ is zero; that
is,

lim
n→∞

f(n)
g(n)

= 0

This works out nicely for our comparison of the integer exponentiation algo-
rithms, since comparison of 2.1 and 2.2 will now show

Xexp2,C(n) ≺ Xexp1,C(n).

Example 2.8. 5 log2(n) + 11 ≺ 3n + 2

lim
n→∞

5 log2(n) + 11
3n + 2

L′

= lim
n→∞

5
n ln(2)

3

=
5

3 ln(2)
lim

n→∞

1
n

= 0

Further examples show that our new notion of order respects polynomial order.

Example 2.9. 8n + 1 ≺ n2 + 2

lim
n→∞

8n + 1
n2 + 2

= lim
n→∞

8
n + 1

n2

1 + 2
n2

=
0
1

= 0

More generally,

Theorem 2.2.1. For i < j, ni ≺ nj.

Proof.

lim
n→∞

ni

nj
= lim

n→∞

1
nj−i

= 0

It is just as easily shown that a change of exponential base gives rise to a change
in order.

Theorem 2.2.2. For 0 < a < b, an ≺ bn.

36 c©2003 Steven Louis Davis

Proof. Since a
b < 1,

lim
n→∞

an

bn
= lim

n→∞

(a

b

)n

= 0

The same cannot however be said about the log functions as might be expected.

Theorem 2.2.3. For 0 < a < b, loga(n) ' logb(n).

Proof.

lim
n→∞

loga(n)
logb(n)

= lim
n→∞

logb(n)
logb(a)

logb(n)

=
1

logb(a)
lim

n→∞
1

=
1

logb(a)
∈ (0,∞)

In terms of order all logs are the same. For this reason analytical results con-
cerning log orders are usually written without the base. There are two ways to
compose polynomial and log functions. The only type of interest is a power of
a log, logi

b(n) Functions of this form are called polylogs.

Theorem 2.2.4. For b > 1, 1 < i < j, logi
b(n) ≺ logj

b(n).

Proof.

lim
n→∞

logi
b(n)

logj
b(n)

= lim
n→∞

1
(logb(n))j−i

= 0

It is clear that for any function f , f 6≺ f , since

lim
n→∞

f(n)
f(n)

= 1 6= 0.

Like ', the relation ≺ is transitive.

Theorem 2.2.5. If f ≺ g and g ≺ h, then f ≺ h.

Inferior Order 37

Proof.

lim
n→∞

f(n)
h(n)

= lim
n→∞

f(n)
h(n)

g(n)
g(n)

= lim
n→∞

f(n)
g(n)

g(n)
h(n)

= lim
n→∞

f(n)
g(n)

lim
n→∞

g(n)
h(n)

= 0

38 c©2003 Steven Louis Davis

2.3 Non-Strict Order

It is possible that during evaluation of a limit, one can only establish

lim sup
n→∞

f(n)
g(n)

< ∞.

In this case the limit supremum could be a positive real number or zero, admit-
ting the two possibilities f ' g or f ≺ g. In such cases it is natural to write
f � g. For this non-strict notion of order, it is clear that for any function f � f .
It is also clear that � is a transitive relation.

Working with the non-strict order is a useful technique for establishing equiv-
alent order.

Theorem 2.3.1. f ' g if and only if f � g and g � f .

While it makes sense to compare the orders of any two nonnegative functions,
ordinary pointwise comparison is not generally possible. That is to say, though
it may be tempting to define the relations f < g and f > g to mean f(n) < g(n)
for all n and f(n) > g(n) for all n, respectively, we can see that any crossing of
the functions makes such global pointwise comparisons impossible. For example,
given the functions f(n) = n + 2 and g(n) = 1

5n(n + 2), it doesn’t even make
sense to say that f < g or f > g pointwise without first restricting the domains
of comparison since g(n) ≤ f(n) for n ∈ (1, 5) but f(n) ≤ g(n) for n ∈ (5,∞).
(f(n) = g(n) for n ∈ {0, 5}). On the other hand, the comparison f ≺ g is easily
established.

Example 2.10. For f(n) = n + 2 and g(n) = 1
5n2 + 2

5n, f ≺ g

lim
n→∞

f(n)
g(n)

= lim
n→∞

n + 2
1
5n2 + 2

5n

= lim
n→∞

n+2
n2

1
5 n2+ 2

5 n

n2

= lim
n→∞

1
n + 2

n2

1
5 + 2

5n

= 0

When two functions do compare pointwise without restriction, that is, if
f(n) < g(n) or f(n) ≤ g(n) for all n, then f � g. Moreover, even if the
inequality holds only for all sufficiently large values of n, the same order relation
still follows. It is for this reason that this type of order is called asymptotic;
the pointwise behavior is only assured for large n. One can prove slightly more;
since the multiplication a positive constant should not effect the order we have:

Lemma 2.3.1. Let c ∈ (0,∞), n0 ∈ N such that f(n) ≤ cg(n) for all n ≥ n0.
Then f � g.

Non-Strict Order 39

Table 2.1: Comparisons Compared

pointwise comparison order comparison

n < 2n n � 2n

n < n2 + 1 n ≺ n2 + 1

n ≤ cn + 4, c > 1 n ' cn + 4

Proof.

lim sup
n→∞

f(n)
g(n)

≤ c

.

It is not enough for f < g pointwise to have f ≺ g as one can easily verify
by noting that 1

2f(n) < f(n) for all n but 1
2f ' f . Table 2.1 illustrates the

situation further. In all three examples it is correct to say f � g.
Lemma 2.3.1 is easily amplified to form a characterization which serves in

most texts as the definition for our notion of f � g.

Theorem 2.3.2. f � g if and only if ∃c ∈ (0,∞),∃n0 ∈ N such that f(n) ≤
cg(n) for all n ≥ n0.

40 c©2003 Steven Louis Davis

2.4 Traditional Notation

The notation used in this book is not conventional. It is much more common
to define order via order classes, that is, by defining sets of all functions of the
same order. In so doing there are usually five different classes defined. The
most basic is the set defined for a given function f as

O(f) = {g : ∃c ∈ (0,∞),∃N ≥ 0, [n ≥ N ⇒ g(n) ≤ cf(n)]}.

The comparison of functions using O(f) corresponds to our non-strict order
comparison; that is, to write g � f is equivalent to writing g ∈ O(f).

Theorem 2.4.1. g � f if and only if g ∈ O(f).

Proof. Let g ∈ O(f). Then ∃c ∈ (0,∞), N ≥ 0 such that g(n) ≤ cf(n) for
n ≥ N . Then lim supn→∞

g(n)
f(n) ≤ c, giving g � f . The argument is readily

reversed.

While O(f) provides a notion of upper bound, reversing the inequality in the
definition provides a corresponding notion of lower bound. The order class is
defined as

Ω(f) = {g : ∃c ∈ (0,∞),∃N ≥ 0, [n ≥ N ⇒ g(n) ≥ cf(n)]}.

Intersecting these two sets provides the notion of equivalent order; that is, for

Θ(f) = O(f)
⋂

Ω(f),

g ' f if and only if g ∈ Θ(f) (or equivalently f ∈ Θ(g) or Θ(f) = Θ(g)). A
modification of the quantifier is needed to define the notion of inferior order.
One obtains two additional order classes defined as

o(f) = {g : ∀c ∈ (0,∞),∃N ≥ 0, [n ≥ N ⇒ g(n) ≤ cf(n)]},

and

ω(f) = {g : ∀c ∈ (0,∞),∃N ≥ 0, [n ≥ N ⇒ g(n) ≥ cf(n)]}.

Then g ≺ f is expressed as g ∈ o(f) and g ∈ ω(f) means f ≺ g.

Theorem 2.4.2. g ≺ f if and only if g ∈ o(f).

Proof. One need only note that g ∈ o(f) if and only if lim
n→∞

g(n)
f(n) = 0.

Unfortunately the most prevalent usage of these order classes incorporates
a deliberate abuse of mathematical notation for the sake of convenience. While
it is straight forward to express equivalent order by writing f ∈ Θ(g), it more
often expressed by writing f = Θ(g) (motivated from the spoken ”f is order
g” which is a natural albeit lazy verbalization of the mathematically precise
notation).

Traditional Notation 41

It is the authors contention that this surfeit of definitions of order classes
early in the study of algorithm analysis serves mostly to confuse students with
an otherwise easily grasped concept.

42 c©2003 Steven Louis Davis

2.5 Bounding Techniques

It is interesting to note that lavish application of coarse bounds can be quite
a useful technique in establishing order relationships. This is due in no small
part to the fact that any interval bounded away from zero and ∞ (or any non-
zero real number in the case the limit exists) is sufficient to establish equivalent
order. The actual numbers involved in the limits are of no importance as long
as they are non-zero and finite. We will now make use of bounding arguments
to establish order relationships that might otherwise appear difficult to prove.
In most cases we will establish coarse pointwise upper bounds valid only for
sufficiently large n.

Example 2.11. 3n5 + n3 + 4n2 + 1 ' n5

Since n5 < 3n5 + n3 + 4n2 + 1 we have n5 � 3n5 + n3 + 4n2 + 1. Also,

3n5 + n3 + 4n2 + 1 ≤ 3n5 + n5 + 4n5 + n5, (for n ≥ 1),

= 9n5

thus 3n5 + n3 + 4n2 + 1 ' n5 by Theorems 2.3.1 and 2.3.1.

Example 2.12.
√

4n2 + 1 ' n

First, √
4n2 + 1 ≤

√
4n2 + 5n2, (for 5n2 ≥ 1, or n ≥ 1√

5
)

= 3n

By Theorem 2.3.1,
√

4n2 + 1 � n. Note also that n =
√

n2 <
√

4n2 + 1, giving
n �

√
4n2 + 1 hence

√
4n2 + 1 ' n by Theorem 2.3.1.

Alternatively, one could have bounded
√

4n2 + 1 by
√

5n for n ≥ 1.

Example 2.13. logb(n2 + 3n + 1) � logb(n)
For n > 1,

logb(n
2 + 3n + 1) ≤ logb(n

2 + 3n2 + n2)

= logb(5n2)
= 2 logb(n) + logb(5)

In the next example a sum will be bounded below by throwing away half of its
terms. As the bound obtained will be of the same order as the upper bound, the
functions order will be established. The function will occur a few more times in
the sequel.

Bounding Techniques 43

Example 2.14. logb(n!) ' n logb(n)

logb(n!) =
n∑

i=1

logb(i)

≤
n∑

i=1

logb(n)

= n logb(n) ,and

logb(n!) ≥
n∑

i= n
2

logb(i)

≥
n∑

i= n
2

logb(
n

2
)

=
n

2
logb(

n

2
)

therefore,

1 ≤ lim
n→∞

n logb(n)
logb(n!)

≤ lim
n→∞

n logb(n)
n
2 logb(

n
2)

= 2 lim
n→∞

logb(n)
logb(n)− logb(2))

= 2 lim
n→∞

1

1− logb(2)
logb(n)

= 2

Thus

lim
n→∞

n logb(n)
logb(n!)

∈ [1, 2] ⊂ (0,∞).

Note that there is a compelling reason to throw away half of the terms above, for
otherwise, one obtains a lower bound of n·0, leaving a large range of uncertainty
for the order of n logb(n).

44 c©2003 Steven Louis Davis

2.6 Delay and Invariance

It is possible to think of using the values of a given function f for higher values
of n in an attempt to get a higher order function; say g(n) = f(n + 100). From
one point of view these seem to be the same function and the possibility of a
difference in order seems silly. In fact for most of the functions considered thus
far there is no difference.

Theorem 2.6.1. Let f ∈ {log(n), nk, an}, i > 0, and g(n) = f(n + i). Then
g ' f .

Proof.

lim
n→∞

log(n)
log(n + i)

= lim
n→∞

1
n
1

n+i

= lim
n→∞

n + i

n
= 1 ∈ (0,∞)

lim
n→∞

nk

(n + i)k
=
[

lim
n→∞

n

n + i

]k

= 1 ∈ (0,∞)

lim
n→∞

an

an+i
= lim

n→∞

1
ai

=
1
ai
∈ (0,∞)

It is however simple to find examples of functions for which such delays make a
difference in order.

Example 2.15. n! ≺ (n + 1)!

lim
n→∞

n!
(n + 1)!

= lim
n→∞

1
n + 1

= 0

Example 2.16. nn ≺ (n + 1)n+1

lim
n→∞

nn

(n + 1)n+1
= lim

n→∞

[
1

n + 1

(
n

n + 1

)n]
=
[

lim
n→∞

1
n + 1

] [
lim

n→∞

(
n

n + 1

)n]
= 0

(
1
e

)

Order Hierarchy 45

2.7 Order Hierarchy

With tools in hand we now proceed to establish the relationships among the
many functions we are likely to encounter. We begin with the simpler functions
and proceed to refine a hierarchy by adding functions with increasingly difficult
comparisons. For reasons which will later become clear we will from this point
forward deal only with monotonic nondecreasing nonnegative functions. It cer-
tainly seems reasonable that algorithm time complexities should yield only such
functions (when was the last time that you ran a program and it transported
you back in time).

It should be observed that the bounded functions, by virtue of the fact that
they do not grow at all, belong at the bottom of the order hierarchy. Can we
select a simplest representative to stand for all such functions? That is if f
is any bounded nonnegative nondecreasing (and nonzero1) function, for what
simple function g can we write f ' g? Let B be an upper bound for the values
of f . Then

0 < lim
n→∞

f(n)
1

< B,

therefore f ' 1. To justify our claim that these belong at the bottom of the
order hierarchy, consider any nonnegative unbounded function f . Then we must
have

lim
n→∞

1
f(n)

= 0,

otherwise f would be bounded. Thus we establish 1 ≺ f .
We have already shown that the exponential, polynomial, and log subhier-

archies obey (except in the degenerate case for logs) a preservation of order
suggested by the powers and bases involved. Our preliminary examples (ref
what) suggest logb(n) ≺ np ≺ an. We now establish these in general.

1Zero functions have no place as time complexity functions. No operation, not even a null
instruction executes in zero time.

46 c©2003 Steven Louis Davis

2.7.1 Polylogs and Powers

We have already seen from Theorem 2.2.4 that the polylog functions form an
order subhierarchy. This entire subhierarchy is bounded by the polynomial
subhierarchy.

Theorem 2.7.1. logk
b (n) ≺ np, for k ≥ 1, b > 1, p > 0

Proof. If k is an integer, then

lim
n→∞

logk
b (n)
np

L′

= lim
n→∞

k logk−1
b (n) 1

n ln(a)

pnp−1

=
k

p ln(a)
lim

n→∞

logk−1
b (n)
np

L′

=
k

p ln(a)
lim

n→∞

(k − 1) logk−2
b (n) 1

n ln(a)

pnp−1

=
k(k − 1)
p2 ln2(a)

lim
n→∞

logk−2
b (n)
np

...

=
k(k − 1)(k − 2) . . . (3)(2)

pk−1 lnk−1(a)
lim

n→∞

logb(n)
np

L′

=
k(k − 1)(k − 2) . . . (3)(2)

pk−1 lnk−1(a)
lim

n→∞

1
n ln(a)

pnp−1

=
k!

pk lnk(a)
lim

n→∞

1
np

= 0.

If k is not an integer, let l = dke. Then

logk
b (n) ≺ logl

b(n)
≺ np.

Misleading Experiments

The asymptotic behavior of an order comparison is not always evident from
simple graphic representations. As an example we consider how the functions
log3

2(n) and n
1
2 compare. Perhaps simple numeric comparison will yield some

insight:
The dominance of the log function over the square root seems apparent. In

terms of order one might naturally conclude that n
1
2 � log3

2(n) and therefore
expect that the limit

lim
n→∞

n
1
2

log3
2(n)

Polylogs and Powers 47

Table 2.2: compared values for log3
2(n) and n

1
2

n log2(n) log3
2(n) n

1
2

22 2 8 2

24 4 64 4

26 6 216 8

28 8 512 16

210 10 1000 32

be zero. Using successive applications of L’hopitals rule for limits of quotients
gives:

lim
n→∞

n
1
2

log3
2(n)

= lim
n→∞

1
2n−

1
2

3 log2
2(n) 1

n ln(2)

=
1

6 ln(2)
lim

n→∞

n
1
2

log2
2(n)

=
1

6 ln(2)
lim

n→∞

1
2n−

1
2

2 log2(n) 1
n ln(2)

=
1

24 ln2(2)
lim

n→∞

n
1
2

log2(n)

=
1

24 ln2(2)
lim

n→∞

1
2n−

1
2

1
n ln(2)

=
1

48 ln3(2)
lim

n→∞
n

1
2

= ∞

Certainly this is not evident from extrapolation of the data points considered
above. In fact, the asymptotic relationship between the two functions is opposite
of that indicated by the preliminary graph. Look at the relative values of these
functions for much larger values of n:
Somewhere between n = 229 and n = 230 the log expression has been overtaken
by the root. This is an example of asymptotic behavior that takes a very large
problem size to be realized.

48 c©2003 Steven Louis Davis

Table 2.3: compared values for log3
2(n) and n

1
2

n log2(n) log3
2(n) n

1
2

216 16 4096 256

220 20 8000 1024

224 24 13824 4096

228 28 21952 16384

229 29 24389 23170

230 30 27000 32768

240 40 64000 1048576

Iterated Log Subhierarchy 49

2.7.2 Iterated Log Subhierarchy

We next introduce a subhierarchy below the polylog hierarchy consisting of com-
positions of logs. Denote the m-fold application of a function f(n) by f [m](n),
that is,

f [m](n) = f(f(f(...f(n)...))) (for m− 1 compositions of f)

For example, if f(n) = n2 + 1, then

f [1](n) = f(n)

= n2 + 1,

f [2](n) = f(f(n))

= f(n2 + 1)

= (n2 + 1)2 + 1

= n4 + 2n2 + 2

f [3](n) = f(f(f(n)))

= f(f [2](n))

= f((n2 + 1)2 + 1)

= ((n2 + 1)2 + 1)2 + 1

= n8 + 4n6 + 8n4 + 8n2 + 5

More precisely, define f [m] for m > 0 by

Definition 2.7.1.

f [m](n) =

{
f(n) ,m = 1
f(f [m−1](n)) ,m > 1

Functional composition represented by f [m] can be used to descend the order
hierarchy below the log functions.

Theorem 2.7.2. log[k+i]
b (n) ≺ log[k]

b (n), for k, i ≥ 1, b > 1

Proof. It suffices to consider i = 1 and apply transitivity.

lim
n→∞

log[k+1]
b (n)

log[k]
b (n)

L′

= lim
n→∞

1

log
[k]
b (n)

d
dn

[
log[k]

b (n)
]

d
dn

[
log[k]

b (n)
]

= lim
n→∞

1

log[k]
b (n)

= 0.

50 c©2003 Steven Louis Davis

Furthermore, the entire iterated log subhierarchy is dominated by by the polylog
hierarchy in the simplest way, that is, any iterated log is dominated by any log.

Theorem 2.7.3. log[i]
b (n) ≺ logp

b(n), for i, b > 1.

Proof. Using the last theorem it suffices to demonstrate that log[2]
b (n) ≺ logb(n).

In fact,

lim
n→∞

log[2]
b (n)

logb(n)
L′

= lim
n→∞

1
n logb(n) ln2(b)

1
n ln(b)

= lim
n→∞

1
logb(n) ln(b)

= 0

Taking things to extremes we define the terminal log function, log∗ function as
follows:

Definition 2.7.2. log∗b(n) = min{k ≥ 0 : log[k]
b (n) ≤ 1}

It should be clear that for any k that log∗b(n) ≤ log[k]
b (n) eventually. Thus

log∗b(n) ≤ log[k+1]
b (n) ≺ log[k]

b (n),

demonstrating that log∗b(n) ≺ log[k]
b (n) for any k.

Polynomials and Exponentials 51

2.7.3 Polynomials and Exponentials

The relationship for polynomials and exponentials is established much the same
way as that for polylogs and polynomials.

Theorem 2.7.4. np ≺ an, for p > 0, b > 1.

Proof. If p is an integer, then

lim
n→∞

np

bn

L′

= lim
n→∞

pnp−1

bn ln(b)

=
p

ln(b)
lim

n→∞

np−1

bn

L′

=
p

ln(b)
lim

n→∞

(p− 1)np−2

bn ln(b)

=
p(p− 1)
ln2(b)

lim
n→∞

np−2

bn

...

=
p(p− 1)(p− 2) . . . (3)(2)

lnp−1(b)
lim

n→∞

n

bn

=
p!

lnp(b)
lim

n→∞

1
bn

= 0

If p is not an integer, let q = dke. Then np ≺ nq ≺ bn.

Finally we put a collective cap on all of the exponentials.

Theorem 2.7.5. an ≺ nn, for a > 0.

Proof.

lim
n→∞

an

nn
= lim

n→∞

(a

n

)n

= 0

since for n > A = dae+ 1, one has a
n < a

A < 1 and
(

a
A

)n → 0.

52 c©2003 Steven Louis Davis

2.7.4 Exotic Order Comparisons

Here we collect, mostly for curiosity’s sake, several order comparisons most of
which are not too likely to arrise in practice but none the less do provide a
greater appreciation for the span of the order hierarchy.
First is a comparison demonstrating an upper bound for all exponentials.

Theorem 2.7.6. an ≺ n!.

Proof. Let N = dae, r = a
N+1 . Then r < 1 and

lim
n→∞

an

n!
=

aN

N !
lim

n→∞

an−N

(N + 1)(N + 2) . . . (n− 1)n

≤ aN

N !
lim

n→∞
rn−N

=
aN

N !rN
lim

n→∞
rn

= 0

Here are two more for very high orders.

Theorem 2.7.7. n! ≺ logn(n)

Proof. By Example 2.14 and Theorem 2.7.3, lim
n→∞

(
log[2](n)
log(n) − log(n!)

n log(n)

)
= c < 0

thus lim
n→∞

n log[2](n)− log(n!) = lim
n→∞

n log(n) lim
n→∞

(
log[2](n)
log(n) − log(n!)

n log(n)

)
= −∞.

Then

lim
n→∞

logn(n)
n!

= lim
n→∞

a
loga

“
logn(n)

n!

”

= lim
n→∞

aloga(loga(n))−loga(n!)

= lim
n→∞

an log[2]
a (n)−loga(n!)

= 0

Theorem 2.7.8. logn(n) ≺ nn.

Proof. Exercise. [Examine the proof of Theorem 2.7.7.]

We now show that there is quite a bit of room between the polynomials and the
exponentials

Theorem 2.7.9. np ≺ dloge!(n).

Proof. Let b = ap, k = dloga(n)e. Since bk ≺ k! by Theorem 2.7.6 we have
apdloga(n)e ≺ dloga(n)e!(n), but np = aloga(np) = ap loga(n) ≤ apdloga(n)e.

Exotic Order Comparisons 53

Theorem 2.7.10. dloge!(n) ≺ loglog(n)(n).

Proof. Exercise. [Let k = log(n) and use transitivity of order.]

Theorem 2.7.11. loglog(n)(n) ≺ nlog(n).

Proof.

lim
n→∞

logloga(n)
a (n)
nloga(n)

= lim
n→∞

a
loga

“
loga(n)

n

”loga(n)

= lim
n→∞

aloga(n)(log[2]
a − loga(n))

= 0

Theorem 2.7.12. For a ≥ b > 1, nlogb(n) ≺ an.

Proof. Using Theorem 2.2.2 it is enough to demonstrate that nlogb(n) ≺ bn. By
Theorem 2.7.1 we have

lim
n→∞

nlogb(n)

bn
= lim

n→∞

blogb(nlogb(n))

bn

= lim
n→∞

blog2
b(n)−n

= 0

54 c©2003 Steven Louis Davis

2.7.5 Ackerman’s Function

Functional composition can also be used to climb the order hierarchy of additive,
multiplicative, and exponential functions and beyond. The general idea is to
start with an additive first order function and use the composition process to
obtain a multiplicative function of first order. Then apply the composition
process to this multiplicative function to obtain an exponential function. The
same process can be applied further to give whatever lies beyond the exponential
function, and there’s no reason to stop there.

Define a sequence of functions beginning with f0(n) = n + 2. Then

f
[m−1]
0 (n) = n + 2(m− 1),

and in particular,

f
[m−1]
0 (2) = 2m.

Next define f1(n) = 2n, so that

f
[m−1]
1 (n) = n2m−1,

and

f
[m−1]
1 (2) = 2m.

Then for f2(n) = 2n, f
[m−1]
2 (2) is a cascade of m nested exponentiations begin-

ning with 2, and this is defined to be f3. One may proceed indefinitely in this
manner to define a sequence of functions f0, f1, f2, f3, f4..., where fm(n) = f

[n−1]
m−1 (2).

Now define Ackermans function (a lesser relative actually) by

a(n) = fn(n).

To get some idea of the growth rate of a(n), consider the first few values for n:

Ackerman’s Function 55

a(0) = f0(0) = 2,

a(1) = f1(1) = 2,

a(2) = f2(2) = 22 = 4,

a(3) = f3(3) = 222
= 16,

a(4) = f4(4) = f
[3]
3 (2)

= f3(f3(f3(2)))

= f3(f3(22))
= f3(f3(4))

= f3(2222

)
= f3(65536)

= 2222
..

.2

(64K levels of exponentiation)

>> 10100000

If written without an exponent, assuming you can write 10 zeros per inch,
this number is a 1 followed by more than a tenth of a mile of zeros. Would you
care to estimate a(5)? It is generally conceded that a(4) is greater than the
number of particles in the universe.

56 c©2003 Steven Louis Davis

Table 2.4: Order Hierarchy

function description

a(n) Ackerman’s simple cousin

nn

logn(n)

n! factorial

an (a > 1) exponential

nlog(n)

loglog(n)(n)

dloge!(n) factorial log

np (p > 0) polynomial

logp(n) (p > 0) polylog

log[i](n) iterated log composition

log∗(n) terminal log

1 constant

2.7.6 Collected Comparisons

Table 2.4 is used to summarize several order comparisons.
Concerning the table the following remarks should be made. In the cases of
polynomial and polylog functions, these labels would perhaps better be called
colloquialisms as more precise labels would be Power and Powerlog. Unlike the
table, the hierarchy is in fact infinite; between any two f, g with f ≺ g there is
a function h with f ≺ h ≺ g.

Existence of the Laplace Transform 57

2.8 Existence of the Laplace Transform

Perhaps the most recognizable appearance of order theory in elementary math-
ematics occurs in the existence criteria for the Laplace Transform. Given a
continuous function f(t) defined on [0,∞) the Laplace Transform of f is de-
fined as the function

F (s) =
∫ ∞

0

e−stf(t) dt

for s > 0. A sufficient condition for the existence of the integral is that f(t) � eat

for a < s.

Theorem 2.8.1. If f is continuous on [0,∞) and f(t) � eat for a < s, then
e−stf(t) is integrable on [0,∞) and∫ ∞

0

e−stf(t) dt = lim
n→∞

∫ n

0

e−stf(t) dt.

Proof. First, the definite integral is defined owing to the continuity and therefore
boundedness of e−stf(t) on any bounded interval. Choose c > 0 and t0 ∈ [0,∞)
such that |f(t)| ≤ ceat for t ≥ t0. Let g(t) = e−stf(t), and gn(t) = g(t)I[0,n](t),
where I[0,n](t) is the indicator function for the set [0, n]. Then gn is integrable
on [0,∞) and gn → g everywhere. The sequence is cauchy in L1[0,∞), for if
n > m ≥ t0, we have

‖gn − gm‖1 =
∫ n

m

e−st|f(t)|dt

≤ c

∫ n

m

et(a−s) dt

=
c

a− s
et(a−s)

∣∣n
m

=
c

a− s

[
en(a−s) − em(a−s)

]
−→ 0, as m,n →∞.

By Chebychev’s and Reisz’s theorems, a subsequence of (gn) must converge
almost everywhere to the L1 limit, and since gn → g everywhere, g must be the
limit, that is, g is integrable. Moreover,∫ ∞

0

e−stf(t) dt = lim
n→∞

∫ ∞

0

gn(t) dt

= lim
n→∞

∫ n

0

e−stf(t) dt

Since the assumption f(t) � eat for a < s implies f(t) ≺ est it might seem
natural to suspect that the condition f(t) ≺ est is sufficient for the existence

58 c©2003 Steven Louis Davis

of the transform. This however is not the case as the function f(t) = esth(t)
demonstrates, where

h(t) =

{
1 , 0 ≤ t < 1
1
t , 1 ≤ t.

Chapter Exercises 59

Chapter Exercises

Order Comparison

E 2.1. Use a language L other than assembly or C to code the fib1 algorithm
and determine Xfib1,L(n).

E 2.2. Compare both of the exponentiation algorithms, exp1 and exp2 on the
same graph.

E 2.3. Find at least three reasons that timing algorithm execution with a stop-
watch is not a fair measure of its time complexity.

E 2.4. Can time complexity analysis be left to a program? That is, can a
program be written which takes algorithms as inputs and whose output is the
time complexity function of the input algorithm?

E 2.5. Find another problem having at least two solutions with different time
complexity functions.

Equivalent Order

For each of the following pairs of functions f, g, determine whether f ' g or
f 6' g.

E 2.6. f(n) = (3n + 1)3, g(n) = n3

E 2.7. f(n) = n5 + 2n2 + 1, g(n) = n4

E 2.8. f(n) = log2(n), g(n) = n

E 2.9. f(n) = log2(1 + 3n), g(n) = n

E 2.10. f(n) = log2
2(n), g(n) = log2(n)

E 2.11. f(n) = ln(3n4 + 5n2 + 2), g(n) = ln(n2) + ln(n)

E 2.12. f(n) = 2n, g(n) = 5n

E 2.13. f(n) = en2+2n+1, g(n) = en2+1

E 2.14. f(n) =
√

2n + 1, g(n) = 2
√

n

E 2.15. f(n) = 2x sin(x) + 3, g(n) = x cos(3x) + 1

E 2.16. Prove Theorem 2.1.2.

60 c©2003 Steven Louis Davis

Inferior Order

For each of the following pairs of functions f, g, demonstrate that f ≺ g.

E 2.17. f(n) = 3n, g(n) = n2 + 3

E 2.18. f(n) = n2 + 4n + 3, g(n) = n5

E 2.19. f(n) = (n + 2)3, g(n) = (n + 2)4

E 2.20. f(n) =
√

n, g(n) = n

E 2.21. f(n) = 100
n , g(n) = n

100

E 2.22. f(n) = n log2(n), g(n) = n2

E 2.23. f(n) = log2(n7), g(n) = n

E 2.24. f(n) = n2 log2(n3), g(n) = n3

E 2.25. f(n) = n2n, g(n) = 3n

E 2.26. f(n) = n22n, g(n) = 3n

Non-Strict Order

Establish the indicated relationship.

E 2.27. n2 + 2n ' n2

E 2.28. n3 + 3
√

n4 + 2n3 + n2 + 3 � n3

E 2.29. 2n2 + 4n log2(n) � n2

E 2.30. 3
√

n3 + 3n2 + 3n � n

E 2.31. (
√

2n + 1)4 � n2

E 2.32. log2

(
(2n)!

(n−1)!

)
� n log2(n)

Polylogs and Powers

For the functions f(n) = log2
2(n), g(n) = n

1
3 do the following:

E 2.33. Graph both functions together on the same graph.

E 2.34. Show that f(n) ≺ g(n).

E 2.35. Find the approximate crossing point of f and g.

E 2.36. Find another pair of functions with this kind of noncharacteristic early
behavior.

Chapter Exercises 61

Iterated Logs

E 2.37. Given that n = 1, 2, 4, 8, 16, 32, ... are convenient values to use in plot-
ting the log2(n) function, determine convenient values to use when plotting the

function f(n) = log
1
2
2 (n− 1).

E 2.38. How big must n be for log∗2(n) = 5?

Polynomials and Exponentials

E 2.39. Find a function f(n) such that np ≺ f(n) ≺ np+1.

E 2.40. Find a function f(n) such that an ≺ f(n) ≺ bn for any b > a.

E 2.41. Prove Theorem 2.7.8.

E 2.42. Prove Theorem 2.7.10.

E 2.43. Find a function that grows more slowly than log∗2(n).

62 c©2003 Steven Louis Davis

II

Algorithm Analysis

63

Chapter 3

Time Complexity Analysis

As applied to algorithms, order analysis is concerned with time and memory
requirements that are characteristic of the algorithm. Functions which charac-
terize these requirements are called time or memory complexity functions. Their
analysis is called time or memory complexity analysis. More formally, given an
algorithm A which solves instances of a problem, a time complexity function for
A is a non-negative function TA(n) associating the time required for A to solve a
problem instance of size n. Memory complexity is similarly defined. Though it
is traditional to characterize problem instances in terms of size alone, this does
not always yield a well defined notion of complexity. Those algorithms behaving
differently for different problem instances of the same size must be analyzed un-
der restrictions capable of differentiating between those cases yielding different
results. To clarify the situation, consider the problem of array searching. It
is clear that the size of the array is not the only consideration in determining
the amount of time required to find a particular element. The element itself is
of primary importance since it could be found early or late in the search. We
refer to such problems as data sensitive. For such problems the time complexity
depends not only on the size of the problem instance but also on the distribution
of data within the instance. If the distribution D is known the time complexity
TD(n) is the desired measure of the algorithm. Because such information is usu-
ally unavailable we use three abstract distributions: those distributions yielding
the best, worst, and average behavior of the algorithm. For data sensitive anal-
ysis we will use the symbols B(n),W (n), and A(n) to denote best, worst, and
average case analysis. When there is no data sensitivity we simply use T (n).

3.1 Average Case Time Complexity Analysis

For data sensitive problems the time complexity T(n) can be considered to be
a random variable governed by the data distribution of the problem instance.
Accordingly, its average value is simply the expectation over its range of values.

65

66 c©2003 Steven Louis Davis

E(T) =
W (n)∑

i=B(n)

iP (T = i) (3.1)

We now analyze the linear and binary search algorithms. It should be noted
here that no complete analysis can be given here unless all possible array dis-
tributions were to be considered. We will satisfy ourselves with uniformly dis-
tributed keys, that is, that in an array of n keys the probability that a key k of
the array is in any particular position p is P (k = a[p]) = 1

n .

Example 3.1 (Average Case Analysis of Linear Search).

For linear search we characterize the possible running times as the possible
array positions in which the search key may be found. Thus the best case is 1,
the worst n, and the average is computed, assuming the uniform distribution,
from 3.1 as:

A(n) = E(T)

=
W (n)∑

i=B(n)

iP (T = i)

=
n∑

i=1

i
1
n

=
1
n

n∑
i=1

i

=
1
n

n(n + 1)
2

=
n + 1

2

Example 3.2 (Average Case Analysis of Binary Search).

For binary search the situation seems much the same except that the worst
case is now log2(n) and the probability of finding a given key at time i is
P (T = i) = 2i−1

n . Then

Time Complexity Analysis 67

int bin_search(int a[],int left,int right,int key){
if(left>right)

return 0;
int midpoint=(left+right)/2;
if(key<a[midpoint])

return bin_search(left,midpoint-1);
else if(key>a[midpoint])

return bin_search(midpoint+1,right);
else

return midpoint;
}

Figure 3.1: Binary Search Algorithm

A(n) = E(T)

=
W (n)∑

i=B(n)

iP (T = i)

=
log2(n)∑

i=1

i
2i−1

n

=
1
n

log2(n)∑
i=1

i2i−1

=
1
2n

log2(n)∑
i=1

i2i

=
1
2n

[
(log2(n)− 1)2log2(n)+1 + 2

]
=

1
2n

[(log2(n)− 1)2n + 2]

=
1
n

[(log2(n)− 1)n + 1]

= log2(n)− 1 +
1
n

Note how easy it would be to make the mistake of using P (T = i) = 1
n for the

uniform distribution as before. The algorithm itself changes the characterization
of the the probability since there are many possible midpoints that could be
examined at a given iteration. Using the incorrect probability would yield

68 c©2003 Steven Louis Davis

A(n) = E(T)

=
W (n)∑

i=B(n)

iP (T = i)

=
log2(n)∑

i=1

i
1
n

=
1
n

log2(n)∑
i=1

i

=
1
n

log2(n)(log2(n) + 1)
2

Thus A(n) ' log2(n)
n . Comparing orders we see immediately that lim

n→∞
A(n) = 0

which would suggest that the best first step for finding a key is to throw ones
array into a giant heap of data before beginning the search!

Chapter 4

Greedy Selection

One of the simplest types of algorithm iteratively assembles a solution from a
set of components with associated values, taking a single component in each
iteration with the choice based on optimal component value. Often the optimal
value will be a maximal value prompting the term ’greedy’ associated with the
algorithm type.

4.1 Single Source Shortest Paths

We first consider the Single Source Shortest Paths problem and investigate a
greedy solution attributed to Dijkstra and important in several applications, no-
tably that of computing routing information for routed networks. The problem,
given a connected weighted graph of n vertices with one vertex v0 identified as
the source vertex, is to find a spanning tree with the property that each path
from a vertex to the source has minimal length for that vertex. Attacking this
problem with an exhaustive enumeration of all possible spanning trees is costly
and voraciously consumes processor cycles even for modest numbers of vertices.
The worst case for n vertices is a completely connected graph of

(
n
2

)
edges. For

each of the n−1 non source vertices {vi : i = 1, 2, . . . , n− 1} we must enumerate
all paths between v0 and vi using the remaining n−2 vertices. Since any subset
of these n − 2 vertices can contribute paths, and every permutation of such a
subset yields a different path we have:

W (n) = (n− 1)
n−2∑
k=0

(
n− 2

k

)
k!

= (n− 1)(n− 2)!
n−2∑
k=0

1
n− 2− k

= (n− 1)!
n−2∑
j=0

1
j
, (j = n− 2− k)

69

70 c©2003 Steven Louis Davis

Using the fact that
∑n−2

j=0
1
j! ∈ [1, e), we have W (n) ' (n− 1)!.

4.1.1 Dijkstra’s Algorithm

Dijkstra’s algorithm (Figure 4.1) grows a tree of internal vertices, initialized
with a single vertex called the source, and iteratively incorporates from the set
of external vertices that vertex whose path to the source vertex, using only
internal vertices, is minimal. This minimal choice which is optimal for the
problem at hand is the greedy selection. When all vertices have become internal,
the resulting spanning tree has the property that for each non source vertex, its
path to the source has minimal weight. This is not necessarily a spanning tree
of minimal weight.

void dijkstra(int n,int edges[][],int source){
int dist[n+1],int link[n+1];
_initialize(n,edges,source,dist,link);
for(int i=1;i<=n;i++){

next_internal=_min(n,edges,source,dist);
_update(n,edges,dist,link,next_internal);}}

int _initialize(int n,int e[][],int s,int d[],int l[]){
for(int i=1;i<=n;i++){

d[i]=e[s][i];
l[i]=s;}}

int _min(int n,int e[][],int s,int d[]){
int min=HUGE_VAL,mindex=-1;
for(int i=1;i<=n;i++)

if((i!=s)&&d[i]&&d[i]<min){
mindex=i;
min=d[i];}

return mindex;}

void _update(int n,int e[][],int d[],int l[],int ni){
for(int i=1;i<=n;i++){

if((i!=ni)&&d[i]){
int tmp=d[ni]+e[ni][i];
if(tmp<d[i]){

d[i]=tmp;
l[i]=ni;}}}

d[ni]=0;}

Figure 4.1: Dijkstra’s Algorithm

Quick inspection shows that Dijkstra’s algorithm is of order n2. In fact, ini-
tialization is an order n function, as are the minimum computation and update

Greedy Selection 71

algorithms. The main algorithm calls the initialization function once and then
calls both the minimum and update functions n times giving

T (n) ' n + n(2n) ' n2.

That such a simple algorithm is nearly at the opposite end of the order hierarchy
from the exhaustive algorithm gives one an appreciation for the time spent going
into the investigation of alternative solutions.

4.2 Minimal Spanning Trees

4.2.1 Prim’s Algorithm

Were one interested in producing spanning trees of minimal total weight, a sim-
ple modification of Dijkstra’s algorithm solves the new problem. As previously
alluded, these structures are called Minimal Spanning Trees. An exhaustive
enumeration of all possible trees on n vertices may be obtained by enumerating
all of the n− 1 element subsets of the edge set which in the worst case is com-
plete having size |E| =

(
n
2

)
. Each of these subsets can be checked in n− 1 steps

to verify whether or not it is a spanning tree for the graph and among those
candidate trees one of minimal weight chosen. Using Theorem A.2.5 the time
for such an enumeration We(n) is bounded below by:

We(n) =
((

n
2

)
n− 1

)
(n− 1)

=
(n(n−1)

2

n− 1

)
(n− 1)

≥
(n

2

)n−1

(n− 1)

= 2
(n

2

)n−1

(
n

2
− 1

2
)

'
(n

2

)n

Using Theorem A.2.9 we have

lim
n→∞

n!√
n(

n
2

)n = lim
n→∞

n!
√

n
(

n
2

)n
= 0,

thus We(n) � n!√
n
. Since 1√

n
> 1

n , we have We(n) � (n− 1)!.
The following algorithm attributed to Prim also grows a tree of internal

vertices, initialized with an arbitrary initial vertex, and iteratively incorporates

72 c©2003 Steven Louis Davis

from the set of external vertices that vertex whose distance to the closest in-
ternal vertex is minimal. When all vertices have become internal, the resulting
spanning tree has has minimal weight. By using the new update function of
Figure 4.2, the meaning of d[i] is changed from distance-to-source to distance-
to-closest-internal-vertex.

void _update(int n,int e[][],int d[],int l[],int ni){
for(int i=1;i<=n;i++){

if((i!=ni)&&d[i]){
if(e[ni][i]<d[i]){

d[i]=e[ni][i];
l[i]=ni;}}}

d[ni]=0;}

Figure 4.2: Prim’s Update

As the control of the algorithm is not changed the order remains the same, n2.

4.2.2 Kruskals’s Algorithm

We will only make brief mention of Kruskal’s algorithm as the algorithm is
much easier to understand abstractly rather than in detail, the data structures
used requiring a different kind of time complexity analysis than the types which
we consider in this text. While Prim’s Algorithm grows a single tree, another
approach is to start with many individual trees and by merging greedily, come up
with a single minimal spanning tree. The greedy choice is of an edge of minimal
weight used to merge two formerly distinct trees. This approach together with
the judicious choice of structures for managing the trees effectively reduces the
selection of MST’s to the sorting of the edge set in order of increasing edge
weight. Given n vertices, the number m of edges for a connected graph exhibits
the following bounds.

n− 1 ≤ m ≤
(

n

2

)
,

or simply,

n− 1 ≤ m ≤ n(n− 1)
2

.

As will later be seen, optimal sorting based on comparison of keys proceeds in
m log(m) time yielding bounds for Kruskal’s time complexity for n vertices,

n log(n) ≤ T (n) ≤ n2 log(n).

Chapter Exercises 73

Chapter Exercises

E 4.1. Design and analyze a greedy algorithm for counting out specific amounts
of standard coins. By adding a new non-standard coin show that the greedy
algorithm can make a less than optimal choice.

E 4.2. Use Dijkstra’s algorithm to find a spanning tree for the graph represented
by the adjacency matrix. Express your answer as a graph.

W 2 3 4 5 6

1 53 57 11 22 35

2 63 5 48 55

3 61 50 52

4 7 43

5 28

E 4.3. Use Prim’s algorithm to find the minimal spanning tree for the graph:

w 2 3 4 5 6 7 8

1 8 15 9 5 8 13 9

2 7 12 21 7 9 6

3 4 13 5 5 2

4 8 5 6 3

5 7 9 14

6 1 4

7 11

E 4.4. Use Kruskal’s algorithm to find a minimal spanning tree for the same
graph.

E 4.5. Determine the cost of the exhaustive approach to finding a minimal
spanning tree.

E 4.6. Compare in detail the orders of Prim’s and Kruskal’s algorithms with
respect to the degree of connectivity of the graph.

74 c©2003 Steven Louis Davis

Chapter 5

Dynamic Programming

5.1 Recursively Defined Solutions

Both Dynamic Programming algorithms and Divide-and-Conquer algorithms
are based on on the application of a recursive mathematical relation between
problems of different sizes sharing sufficient structure that all problem sizes can
be acted on by common code. The given problem is either built up from sev-
eral generations of smaller problems or alternatively is successively decomposed
into smaller problems. Though these two alternatives described seem identical
they are not in fact. The construction of larger and larger problems start-
ing from smallest problems will determine which problems of intermediate size
are constructed, and the process of successive decomposition of problems into
smaller sizes may determine different sets of problems of intermediate size. If
the decomposition produces replication of smaller problems then the process is
inherently inefficient. The two approaches are naturally referred to as bottom-
up and top-down applications of the recursive relations relating the problem
sizes. More commonly, algorithms based on these two approaches are called
Dynamic Programming and Divide-and-Conquer algorithms respectively. An
important indicator of which application is appropriate is apparent for opti-
mization problems: If the decomposition of an optimal solution for a problem
of given size necessarily yields optimal solutions for distinct subordinate smaller
problems, then a bottom-up strategy should work. This is sometimes referred
to as a principle of optimality.

5.2 Calculating Combinations

Combinations C(n, k) have already occurred several times in our analyses and
it is natural to turn to the problem of their computation. Surprisingly the
reader is likely already familiar with a dynamic programming solution for their
computation. To extract a possibly dormant memory we turn to the simple
technique of rapid expansion of integer powers of binomials (a + b)n. Manual

75

76 c©2003 Steven Louis Davis

labor for a few values of n produces the results in Figure 5.1.

1
a + b

a2+2ab + b2

a3 + 3ab + 3ab2 + b3

a4 + 4a3b + 6a2b2 + 4ab3 + b4

Figure 5.1: Binomial Expansions

It is a simple matter to remember to cascade the powers for ai beginning with
n and descending to 0 and also to do the reverse with the powers for bj . Elimi-
nating all but the coefficients from the expansions yields the simplified diagram
of Figure 5.2 which is immediately recognized as Pascal’s triangle.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Figure 5.2: Pascal’s Triangle

Noting that the outer coefficients are always ones it is apparent that any inner
coefficient can be obtained by adding the two coefficients immediately above its
position provided of course that they have already been computed. A trivial
shifting of the triangle as shown in Figure 5.3 to fit into an ordinary array
immediately suggests an algorithmic solution.
Calling the array C and indexing from 0, now any interior element of the triangle
can be obtained using the relation:

C(n, k) =

{
1, k ∈ {0, n},
C(n− 1, k) + C(n− 1, k − 1), 0 < k < n.

(5.1)

Provided that one begins with the simplest entries for n = 0, 1 and progresses
to higher values for n, the necessary entries will always be available for compu-
tation of entries in the next line. This is precisely the character of a dynamic

Dynamic Programming 77

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Figure 5.3: Shifted Pascal’s Triangle

programming solution. The obvious realization of the algorithm is given in
Figure 5.4.

int bc1(int n,int k){
if(k==0||k==n)

return 1;
int C[n+1][n+1];
C[1][0]=C[0][1]=1;
for(int i=2;i<=n;i++)

for(int j=0;j<=i;j++)
if(j==0||j==n)

C[i][j]=1;
else

C[i][j]=C[i-1][j]+C[i-1][j-1];
return C[n][k];}

Figure 5.4: Binomial Coefficient Algorithm

The time required here can be given as

Tbc1(n) = 1 +
n∑

i=2

(i + 1)

since the inner loop size depends on the outer loop index. Using sum 1.7.1 we
obtain

78 c©2003 Steven Louis Davis

Tbc1(n) = 1 +
n∑

i=2

(i + 1)

= 1 +
n∑

i=2

i +
n∑

i=2

1

=
n∑

i=1

i + n− 1

=
n(n + 1)

2
+ n− 1,

so that

Tbc1(n) ' n2.

One may notice that the computation of bc1(n, k) only requires a rectangular
swath of Pascal’s triangle delimited by the four entries (0, 0), (k, k), (n, k), (n− k, 0),
giving the algorithm:

int bc1a(int n,int k){
int B[n];
if(k==0||k==n)

return 1;
B[0]=B[1]=1;
for(int i=2;i<=n;i++){

if(i<=k)
B[i]=1;

for(int j=min(i-1,k);j>=max(1,i-n+k);j--)
B[j]=B[j]+B[j-1];}

return B[k];}

Figure 5.5: Minimal Binomial Coefficient Algorithm

This version also uses a single vector to hold only the last row of the computed
array. From this version we refine our measure for Tbc1(n) leaving n and k
independent as

Tbc1(n, k) ' nk.

Then we obtain best and worst cases for extreme values of k = 1, k = n as
Bbc1(n, k) ' n, and Wbc1(n, k) ' n2 respectively. Note that if only small values
of k will be used that this algorithm justifies its extra minimum and maximum
computations quite nicely.

In order to gain appreciation for the dynamic algorithm we would like an-
other algorithm against which to compare. Being that there is no obvious coun-
terpart to the exhaustive enumerations used for the graph theoretic problems

Dynamic Programming 79

we turn to the only other easy avenue, that of applying the recursive definition
5.1 in a top-down manner obtaining the recursive algorithm in Figure 5.6.

int bc2(int n,int k){
if(n<2)

return 1;
else

return bc2(n-1,k)+bc2(n-1,k-1);}

Figure 5.6: Recursive Binomial Coefficients Algorithm

A simple analysis shows the recursive algorithm to be very poorly behaved. In
fact, the algorithm’s time is characterized precisely by the magnitude of the
coefficient being computed:

Tbc2(n, k) '
(

n

k

)
.

Since the largest values are obtained for n = d2ke, we have ,assuming n = 2k,

Wbc2(n, k) = T (2k, k)

=
(

2k

k

)
=

(2k)!
(k!)2

=
(

2k

k

)(
2k − 1
k − 1

)(
2k − 2
k − 2

)
. . .

(
k + 1

1

)
.

By Theorem A.2.6 we have

Wbc2(n, k) � 2k = (
√

2)n.

As Wbc1 ' n2 ≺ (
√

2)n, we retire from the analysis somewhat pleased with the
dynamic algorithm.

The reader may have one other algorithm in mind motivated by the formula(
n

k

)
=

n!
k!(n− k)!

.

Since n! can certainly be computed in n time, the three factorials can also be
computed and divided in n time giving an algorithm superior to the dynamic
algorithm. There is however one draw back to this approach. Owing to the
relatively large possible values of n!, k!, and (n− k)!, one obtains an algorithm
where these required intermediate values may overflow the capability of the
processor even when

(
n
k

)
is representable on that same processor. If unbounded

precision is available this of course poses no difficulty.

80 c©2003 Steven Louis Davis

5.3 Shortest Paths Revisited

The Shortest Paths Problem simply stated is to find for each pair of vertices in
a given graph, a path between them of minimal weight. The general Shortest
Paths problem can be thought of as requiring solutions of the Single Source
problem using each vertex in turn as the source. Quite naturally, for a graph of n
vertices this could be achieved in n3 time by using Dijkstra’s n2 order algorithm
for each of the n source vertices. We next give an alternative algorithm again
producing a solution of order n3 but using a dynamic programming approach.
Let G = (V,E, W) be a weighted undirected graph of n vertices. Consider the
shortest path between fixed vertices i, j having allowed for the use of any of the
vertices in a given set A ⊂ V as intermediate vertices. Denoting the length of
this shortest path by D(i, j, A), we see that the length of the shortest path in G
between i, and j is given by D(i, j, V). It is also plain that D(i, j, ∅) = Wi,j . We
thus have a description of path lengths between vertices which can describe both
paths of no intermediate vertices as well as shortest paths which can have as
many as n−2 intermediate vertices. Now imagine that for a given set size k < n,
one has available all shortest path lengths D(i, j, A) between pairs of vertices i, j
and considering any subset A ⊂ V of size k as possible intermediates. It is then a
simple matter to derive, for each pair i, j of vertices and new intermediate vertex
k ∈ V \ (A ∪ {i, j}) the length of any shortest path between i and j considering
all paths within A∪{k}. If the inclusion of k yields a path shorter than D(i, j, A),
then the length of this new path must satisfy

D(i, k, A) + D(k, j, A) < D(i, j, A),

and in this case we record

D(i, j, A ∪ {k}) = D(i, k, A) + D(k, j, A).

To further simplify matters we will consider only the sets Ak = {1, 2, . . . , k}
together with A0 = ∅. We now have a simple way to enumerate a partic-
ular sequence of sets A0, A1, . . . , An = V and computing from each collection
{D(i, j, Ak)}i,j the collection {D(i, j, Ak+1)}i,j . Initializing the collection {D(i, j, A0)}i,j

from (Wi,j), the final collection {D(i, j, An)}i,j yields all desired shortest path
lengths. This description outlines Floyd’s Shortest Paths algorithm which is
given in figure 5.7.

The results stored in D,P consist of the shortest path lengths together with
the information necessary to reconstruct the actual paths. The interpretation of
Pij is as the intermediate vertex required to improve the shortest path at the kth

stage of the algorithm. A recursive algorithm can then be used to reconstruct
the actual set of intermediate vertices in proper order as shown in Figure 5.8.
The path is the in-order yield of a binary tree encoded in P .

Since Floyd’s algorithm consists of three nested loops of size n we conclude
that T (n) ' n3. Since the recursive path recovery algorithm never produces
more than n vertices, its order n does not increase the order of the main algo-
rithm when the costs of both are considered together.

Dynamic Programming 81

void floyd(int n,int D[][],int P[][]){
for(int k=1;k<=n;k++)

for(int i=1;i<=n;i++
for(int j=1;j<=n;j++){

int l=D[i][k]+D[k][j];
if(l<D[i][j]){

D[i][j]=l;
P[i][j]=k;}}}

Figure 5.7: Floyd’s Algorithm

void path(int i,int j){
if(P[i][j]){
path(i,P[i][j]);
cout<<P[i][j]<<endl;
path(i,P[i][j]);}}

Figure 5.8: Path Retrieval Algorithm

5.4 Traveling Salesman Problem

Within a connected graph we may encounter circuits, that is paths which can be
endlessly traversed. Any circuit connecting all the vertices of a graph is called a
Hamiltonian circuit or a tour. Given a graph with at least one tour an obvious
tour of interest is one of minimal total edge weight. The identification of such
a tour is the goal of the traveling salesman problem. More formally, if H(G) is
the set of Hamiltonian circuits for a given graph G = (V,E,W) and H(G) 6= ∅,
we seek any tour h ∈ H(G) such that

∑
e∈h W (e) is minimal.

An exhaustive enumeration in a completely connected graph (the worst case)
is quite expensive. Noting that every vertex is on every tour we fix one vertex
as the source of enumeration. if |V | = n there are n − 1 vertices which could
be the first (non-source) vertex visited on the tour. For each of these there are
n − 2 remaining vertices which could be next on the tour, n − 3 for the next
vertex and so on. The total number of tours to enumerate is thus (n− 1)!.

Having arbitrarily fixed vertex i0 as a source of enumeration we will base a
somewhat less expensive enumeration on the definition of the quantity D(i, A)
defined for any vertex i ∈ V \ {i0} and A ⊂ V \ {i, i0} to be the length of any
shortest path between vertices i, i0 which passes through every vertex in A. The
quantities D(i, ∅) are plainly the weights of the edges {i, i0} and are initialized
from the weight function of the graph. The only exception to the definition is
that when A = V \ {i0}, we allow i = i0. Then

D(i0, A) = D(i0, {1, 2, 3, . . . , i0 − 1, i0 + 1, . . . , n}) (5.2)

gives the length of any tour of minimal length.

82 c©2003 Steven Louis Davis

If one has computed all quantities {D(i, A)}|A|=k it is then a simple matter
to obtain the quantities {D(i, A)}|A|=k+1. Given A with |A| = k + 1 we can
choose any of the k + 1 vertices j ∈ A to form the first edge in the minimal
path described by D(i, A). This leaves the k vertices of A \ {j} which must
still be used when traversing any residual minimal path from j to i0. Since this
residual path must be minimal its length is properly described as D(i, A \ {j}).
By choosing the vertex j minimizing the path from i directly to j and then
continuing along a minimal residual path to i0 we obtain the relation

D(i, A) = min
j∈A

{Wi,j + D(j, A \ {j})}. (5.3)

Using 5.3 we now can obtain {D(i, A)}|A|=1 from {D(i, A)}|A|=0, {D(i, A)}|A|=2

from {D(i, A)}|A|=1, and penultimately {D(i, A)}|A|=n−2 from {D(i, A)}|A|=n−3,
adhering to the original definition of D(i, A) that does not allow i = i0. Finally a
single calculation using 5.3 with i = i0 is used to find 5.2. Figure 5.9 summarizes
the algorithm.

for i=1 to n
D(i,{})=W[i,i0]

for k=1 to n-1
for each subset A of V\{1} with |A|=k

for i in V\(A U {1})
D(i,A)=min {W[i,j]+D(j,A\{j}) : j in A}.

D(1,{2,3,...,n})=min {W[i,j]+D(j,A\{j}) : 1<=j<=n,j<>1}

Figure 5.9: Traveling Salesman Algorithm

Minimal paths are reconstructed by augmenting the algorithm with an ad-
ditional storage structure P (i, A) whose value is the first value of j establishing
the minimum D(i, A) in the inner most loop. If this is the sequence j1, j2, . . . , jm

where m is the length of a minimal tour, then these would be stored in P as

j1 = P (i0, A1) A1 = V \ {i0}
j2 = P (j1, A2) A2 = A1 \ {j1} = V \ {i0, j1}
j3 = P (j2, A3) A3 = A2 \ {j2} = V \ {i0, j1, j2}

To analyze the algorithm we again count loop iterations. The initializing
loop and the final loop are clearly inferior additions to the main nested loop
which is where we concentrate. The outer most loop runs k for n− 1 iterations
but the code inside the loop uses the value of k at each iteration and so we will
sum on k. The next loop must choose all k element subsets of the n−1 element
set V \ {i0} which is easily obtained as

(
n−1

k

)
. The next loop runs through

all elements of the n− k − 1 element set V \ (A ∪ {i0}). Finally, the inermost
loop is the minimum computation ranging over the k elements of the set A. We
therefore have

Dynamic Programming 83

T (n) =
n−1∑
k=1

(
n− 1

k

)
(n− k − 1)k.

With a little massaging this sum is easily worked out. First, using Theorem
A.2.1,

(n− k − 1)
(

n− 1
k

)
= (n− 1− k)

(
n− 1

k

)
= (n− 1)

(
n− 2

k

)
.

Thus T (n) becomes

T (n) = (n− 1)
n−1∑
k=1

k

(
n− 2

k

)
.

Next we reindex the sum, letting i = k − 1, to obtain

T (n) = (n− 1)
n−2∑
i=0

i

(
n− 2

i

)
.

Now by Theorem A.2.4,

n−2∑
i=0

i

(
n− 2

i

)
= (n− 2)2n−3

and we have

T (n) = (n− 1)(n− 2)2n−3 ' n22n

.
It is interesting to note that having devoted so much effort to the algorithm
we have obtained a rather expensive solution. It is, however, better than the
(n− 1)! order exhaustive approach but not by much. In fact, the new approach
is still an exhaustive enumeration of a kind, albeit a smarter one. It so happens
that no algorithm has yet improved on n22n order.

5.5 Order of Sequenced Matrix Multiplication

Consider the problem of multiplying a sequence of matrices (Mi)n
i=1 with Mi ∈Mdi−1di

for positive integer dimensions d0, d1, . . . , dn. Owing to the associativity of ma-
trix multiplication there are many possible orders of associations available to
compute the product P =

∏n
i=1 Mi. Consider the product:

84 c©2003 Steven Louis Davis

P = M1M2M3M4M5

=

 1 2 3

4 5 6




1 2

3 4

5 6


 1 2 3 4

5 6 7 8





1 2

3 4

5 6

7 8



 1 2

3 4

 .

We compute the product in several different orders of association and count the

Dynamic Programming 85

number of scalar multiplications for each. First a left most association is used.

P = [[[M1M2]M3]M4]M5

=






 1 2 3

4 5 6




1 2

3 4

5 6




 1 2 3 4

5 6 7 8






1 2

3 4

5 6

7 8





 1 2

3 4



=




 22 28

49 64


 1 2 3 4

5 6 7 8






1 2

3 4

5 6

7 8





 1 2

3 4

 ,12 multiplications

=



 162 212 262 312

369 482 595 708





1 2

3 4

5 6

7 8





 1 2

3 4

 ,32 multiplications

=

 4292 5240

9746 11900


 1 2

3 4

 ,16 multiplications

=

 20012 29544

45446 67092

 ,8 multiplications

We have required 68 scalar multiplications in total. Next computing with right-
most associativity we have:

86 c©2003 Steven Louis Davis

P = M1[M2[M3[M4M5]]]

=

 1 2 3

4 5 6






1 2

3 4

5 6





 1 2 3 4

5 6 7 8







1 2

3 4

5 6

7 8



 1 2

3 4









=

 1 2 3

4 5 6






1 2

3 4

5 6





 1 2 3 4

5 6 7 8





7 10

15 22

23 34

31 46






,16 multiplications

=

 1 2 3

4 5 6





1 2

3 4

5 6


 230 184

534 788


 ,16 multiplications

=

 1 2 3

4 5 6




1298 1760

2826 3704

4354 5648

 ,12 multiplications

=

 20012 26112

45446 59448

 ,12 multiplications

Here there is a total of 56 scalar multiplications, somewhat better than before.
Finally we will use the order:

Dynamic Programming 87

P = [M1M2][[M3M4]M5]

=


 1 2 3

4 5 6




1 2

3 4

5 6









 1 2 3 4

5 6 7 8





1 2

3 4

5 6

7 8





 1 2

3 4





=

 22 28

49 64







 1 2 3 4

5 6 7 8





1 2

3 4

5 6

7 8





 1 2

3 4




,12 multiplications

=

 22 28

49 64



 50 60

114 140


 1 2

3 4


 ,16 multiplications

=

 22 28

49 64


 230 340

534 788

 ,8 multiplications

=

 20012 29544

45446 67092

 ,8 multiplications

This order totals 44 scalar multiplications, the best yet. If an efficient algorithm
can be devised to determine the best order of association then much time can
be saved in the processor doing scalar multiplications.

We first examine an exhaustive enumeration of all possible orders of associ-
ation. If N(n) is the total number of different associations then considering just
the left and right-most associations shows that N(n) > 2N(n− 1), since each
of these associations accounts for one of the original matrices and then must
count the number of possible associations for the remaining sequence of n − 1
matrices. Using the fact that N(1) = 1, we have

N(n) > 2N(n− 1) > 22N(n− 2) > · · · > 2kN(n− k) = 2n−1,

for n−k = 1. To formulate the dynamic approach we will consider that index j

88 c©2003 Steven Louis Davis

characterizing the last product performed for a given association. For example,
in the left-most association the last product performed is(

n−1∏
i=1

Mi

)
Mn,

associated with the index j = n− 1, while in the right-most it is given by

M1

(
n∏

i=2

Mi

)

where j = 1. In general we are focusing on the last product,

(
j∏

i=1

Mi

) n∏
i=j+1

Mi

 .

There are n−1 such final products from which to select one with a minimal num-
ber of scalar multiplications, each subordinate product having several possible
orderings for its products. Since

(∏j
i=1 Mi

)
∈Md0dj

and
(∏n

i=j+1 Mi

)
∈Mdjdn

,
the number of scalar multiplications for this final product is d0djdn. Denoting
the total number of number of scalar multiplications for the entire sequence by
m(1, n) we have

m(1, n) = min
1≤j<n

{d0djdn + m(1, j) + m(j + 1, n)}.

We see that the quantity m(1, n) requires similar quantities m(1, j), and m(j + 1, n).
Noting that these describe associations for sequences of length less than n, we
have stumbled on a recursive relation that can be used in a dynamic algorithm:

m(i1, i2) = min
i1≤j<i2

{di1−1djdi2 + m(i1, j) + m(j + 1, i2)}. (5.4)

The smallest possible sequences contain only one matrix and can thus be
trivially initialized as m(i, i) = 0 as no scalar multiplications are required. All
quantities m(i, j) = 0 can be compiled and stored in a table from which the
desired association is subsequently retrieved. Figure 5.10 gives the algorithm for
compiling the association information together with algorithms for computing
the minimum 5.4 and for retrieving the actual association from the compiled
association table.

We now turn to the analysis. As the retrieval algorithm is only called enough
times to print out the n matrices with a given association, it is an order n
algorithm. The FindMin algorithm has order col − row = diag − 1 and is used
within BuildA’s nested loops giving a time complexity of (using d, r in place of
diag, row respectively)

Dynamic Programming 89

T (n) =
n−1∑
d=2

n−d+1∑
r=1

(d− 1)

=
n−1∑
d=2

(d− 1)
n−d+1∑

r=1

1

=
n−1∑
d=2

(d− 1)(n− d + 1)

=
n−1∑
d=2

(−d2 + [n + 2]d− [n + 1])

= −
n−1∑
d=2

d2 + (n + 2)
n−1∑
d=2

d−
n−1∑
d=2

(n + 1)

= 1−
n−1∑
d=1

d2 + (n + 2)

(
n−1∑
d=1

d− 1

)
−

n−1∑
d=2

(n + 1)

= 1− (n− 1)(n)(2[n− 1] + 1)
6

+ (n + 2)
(

(n− 1)(n)
2

− 1
)
− (n + 1)(n− 2)

= 1− (n− 1)(n)(2n− 1)
6

+
(n + 2)(n− 1)(n)

2
− (n + 2)− (n + 1)(n− 2)

=
1
6
n3 + bn2 + cn + d

' n3

90 c©2003 Steven Louis Davis

int m[n+1][n+1];
int a[n+1][n+1];

void FindMin(int row,int col){
m[row][col]=MAXINT;
for(int j=row;j<col;j++){

int x=d[row-1]*d[j]*d[col]+m[row][j]+m[j+1][col];
if(x<m[row][col]){

m[row][col]=x;
a[row][col]=j;

}
}

}

void BuildA(int n,int d[]){
for(int diag=2;diag<n;diag++)

for(row=1;row<=n-diag+1;row++){
col=row+diag-1;
FindMin(row,col);

}
FindMin(1,n);
}

void RetrieveAssociation(int i,int j){
// initial call with i=1,j=n
if(i==j)

cout<<"M"<<i;
else{

int k=a[i][j];
cout<<"(";
retrieve_order(i,k);
retrieve_order(k+1,j);
cout<<")";
}

}

Figure 5.10: Order of Sequenced Matrix Multiplication Algorithm

Chapter Exercises 91

Chapter Exercises

E 5.1. Given a hypothetical machine architecture where the largest representable
integer is 999, find n and k such that B(n, k) can be computed with the dynamic
algorithm but not with the factorial algorithm.

E 5.2. Given the matrix D3 of values for the k = 3 iteration of Floyd’s algo-
rithm, find the values for the k = 4 iteration [transform D3 into D4]

D3 2 3 4 5 6

1 34 13 29 30 38

2 47 18 31 54

3 16 43 51

4 42 17

5 62

E 5.3. Given the shortest paths encoded by Floyd’s algorithm in the following
path matrix, find the shortest path between vertices 1 and 6.

P 2 3 4 5 6 7 8 9

1 8 7 8 0 8 0 7 7

2 4 0 0 0 8 4 0

3 0 9 4 0 0 0

4 2 2 8 0 0

5 2 9 9 0

6 8 4 2

7 0 0

8 0

E 5.4. For a Traveling Salesperson’s Problem of 4 vertices, list the order in
which the quantities D(i, A) are generated by the dynamic algorithm.

E 5.5. Use the dynamic algorithm to find the optimal tour for the graph:

92 c©2003 Steven Louis Davis

w 2 3 4

1 7 4 6

2 2 6

3 3

E 5.6. Given the optimal matrix multiplication order encoded in the follow-
ing matrix, use the order recovery algorithm to print out the optimal matrix
associations.

P 2 3 4 5 6 7 8

1 1 2 3 2 5 5 7

2 2 2 2 5 2 7

3 3 3 5 3 7

4 4 5 4 7

5 5 5 7

6 6 7

7 7

E 5.7. Use the dynamic algorithm to find the length of an optimal tour for the
graph: [you may find the large table convenient for representing D(i, A).

w 2 3 4 5

1 44 51 26 10

2 23 54 3

3 6 33

4 36

Chapter Exercises 93

D(i, A){2}{3}{4}{5}{2,3}{2,4}{2,5}{3,4}{3,5}{4,5}{2,3,4}{2,3,5}{2,4,5}{3,4,5}{2,3,4,5}

1

2

3

4

5

E 5.8. Use induction to show that the recursive binary coefficients algorithm
computes 2

(
n
k

)
− 1 terms.

E 5.9. Analyze the recursive algorithm for computing the order of chained ma-
trix multiplication.

94 c©2003 Steven Louis Davis

Chapter 6

Divide and Conquer

We now turn to the flip side of the application of recursively defined solutions in
a top-down fashion. Whereas dynamic algorithms begin with the smallest ele-
ments of the problem space and successively assemble larger and larger solutions
culminating in the solution of a whole problem instance, divide and conquer al-
gorithms make their first application to the whole problem instance, successively
subdividing the problem into smaller instances until trivialy solvable smallest
case instances are reached. The algorithms direct the efficient partitioning of
problems into smaller problems which do not overlap. To see how this process
might go wrong one can consider the top-down application of the recursive prin-
ciple 5.4 used in the solution of the sequenced matrix multiplication problem:

m(i1, i2) = min
i1≤j<i2

{di1−1djdi2 + m(i1, j) + m(j + 1, i2)}.

Applying 5.4 using a top-down strategy yields a new algorithm for finding the
minimum number of scalar multiplications. (compare with BuildA and FindMin
from Figure 5.10).

For simplicity we have settled with finding the minimum number of scalar
multiplications and not bothered with storing information needed for optimal
association retrieval. Of course, the natural formulation for the time complex-
ity of a recursively defined algorithm is a recursively defined time complexity
function. For the algorithm of Figure 6.1 we have

T (n) =

{∑n−1
j=1 (T (j) + T (n− j)) , n > 1

1 , n = 1.

or more simply,

T (n) =

{
2
∑n−1

j=1 T (j) , n > 1
1 , n = 1.

(6.1)

Again, for brevity we will simplify the analysis by discarding most terms of the
sum (all except the last) and settling for a lower bound. We shall later return

95

96 c©2003 Steven Louis Davis

int FindMin(int i1,int i2,int d[]){
if(i1==i2)

return 0;
else{

min=MAXINT;
for(int j=i1;j<i2;j++){

int x=d[i1-1]*d[j]*d[i2]+FindMin(i1,j)+FindMin(j+1,i2);
if(x<min)

min=x;
}

return min;
}

}

Figure 6.1: Top-Down application of equation 5.4

to the full analysis to introduce a technique for simplifying such sums. For the
time being we have

T (n) > 2T (n− 1)

> 22T (n− 2)

> 23T (n− 3)
...

= 2kT (n− k)

When n− k = 1 we obtain

T (n) = 2k · 1 = 2n−1.

This does not compare favorably with the order n3 of the dynamic algorithm.
Examination of the algorithm shows that the top-down application of 5.4 does
not partition the problems smaller instances in a non-overlapping way. Most
smaller problem instances are solved several times during the computation, a
situation which is amply reflected in its comparative inefficiency.

For a positive motivational problem we turn to the searching of sorted ar-
rays. That is, given an array a[. . .] of size n and a search key k presumed
to be an element of a, return the position of k in a. We employ the binary
search technique already given in Figure 3.1. In the worst case the maximal
number of recursive calls will be made and the key found only when the last
subarray being searched has size 1 as detected when left = right. The recursive
characterization of the time complexity is given by 6.2.

Divide and Conquer 97

W (n) =

{
1 + W

(
n
2

)
, n > 1

1 , n = 1
(6.2)

98 c©2003 Steven Louis Davis

6.1 Constructive Induction

The recursively defined time complexity functions are simply referred to as re-
currences. We employ a technique to solve recurrences of a particularly simple
form, that is, recurrences having only one recursive term. These we refer to
as elementary recurrences. The technique is essentially one of repeated sub-
stitution. With enough substitutions a pattern can usually be recognized that
expresses the function without any recursion. This process of obtaining solutions
for recurrences will be referred to as constructive induction.
For the recurrence in 6.2 we proceed as follows:

W (n) = 1 + W
(n

2

)
= 1 +

[
1 + W

(n
2

2

)]
= 2 + W

(n

22

)
= 2 +

[
1 + W

(n
22

2

)]
= 3 + W

(n

23

)
Continuing this process we establish the formula

W (n) = k + W
(n

2k

)
, (6.3)

which correctly gives the result for any number k of substitutions using the
recursive part of 6.2 . Reasoning that the argument of W in 6.3 will eventually
reach the base value 1, we have

W (n) = k + W (1),
n

2k
= 1

= k + 1
(6.4)

Using n
2k = 1, we can solve for k giving

W (n) = log2(n) + 1.

For another simple example consider the Towers of Hanoi problem stated as
follows: Given a set of n discs of diameters 1, 2, . . . , n initially placed one atop
the other in a single stack of decreasing diameters, move the stack one disc at a
time to recreate the original stack in a new location while never placing a disc
on top of a smaller disc and by never having more than three stacks in total.
By formulating a solution for moving all n discs recursively in terms of moving
the top disc and then making a recursive call to move the remaining n− 1 discs,
we obtain the algorithm in Figure 6.2 where we have labeled three stacks 1, 2, 3.

Constructive Induction 99

Assuming the stack resides initially on stack position 1 and is to end at stack
position 3, the initial call would be toh(n, 1, 3). The algorithm just prints out
the moves that should be made.

void toh(int n,int src,ind dest){
if(n>1){

int tmp=6-src-dest;
toh(n-1,src,tmp);
cout<<"move one disk from stack "<<src<<" to stack "<<dest<<endl;
toh(n-1,tmp,dest);
}

}

Figure 6.2: Recursive Towers of Hanoi Solution

The corresponding recurrence for the time complexity is given by

T (n) =

{
1 + 2T (n− 1) , n > 1
1 , n = 1

(6.5)

Constructive induction yields:

T (n) = 1 + 2T (n− 1)
= 1 + 2[1 + 2T ([n− 1]− 1)]

= 1 + 2 + 22T (n− 2)

= 1 + 2 + 22[1 + 2T ([n− 2]− 1)]

= 1 + 2 + 22 + 23T (n− 3)
...

= 1 + 2 + 22 + · · ·+ 2k−1 + 2kT (n− k)

= 1 + 2 + 22 + · · ·+ 2k−1 + 2kT (1) ,n− k = 1

= 1 + 2 + 22 + · · ·+ 2k−1 + 2k

=
k∑

i=0

2i

= 2k+1 − 1
= 2n − 1

It is sometimes necessary to perform simplifying operations on recurrences to
render an elementary recurrence. We now return to the analysis of the top-down
solution 6.1 for the Sequenced Matrix Multiplication problem:

100 c©2003 Steven Louis Davis

T (n) =

{
2
∑n−1

j=1 T (j) , n > 1
1 , n = 1.

This is decidedly not an elementary recurrence having many recursive terms.
We can however quickly obtain an elementary recurrence after considering the
difference T (n)− T (n− 1). Since

T (n)− T (n− 1) = 2
n−1∑
j=1

T (j)− 2
[n−1]−1∑

j=1

T (j)

= 2T (n− 1),

we have T (n) = 3T (n− 1). Now we obtain

T (n) = 3T (n− 1)
= 3[3T ([n− 1]− 1)]

= 32T (n− 2)
...

= 3kT (n− k)

= 3kT (1) ,n− k = 1

= 3k · 1
= 3n−1

It should be noted that sums can easily masquerade as recurrences.

Theorem 6.1.1. For f(n) = an +f(n−1), f(1) = a1 we have f(n) =
∑n

i=1 ai.

As with any analysis technique there is no substitute for practice. Table 6.1
summarizes results for several elementary recurrences which the student is en-
couraged to solve before looking at the solutions worked out in the following
examples.

Constructive Induction 101

Table 6.1: Elementary Recurrences

f(n)∗ solution∗∗ order

1 1 + f(n
2) log2(n) + 1 log(n)

2 1
n + f(n− 1)

∑n
i=1

1
i log(n)

3 log2(n) + f(n
2) 1

2 log2(n)(log2(n) + 1) + 1 log2(n)

4 1 + 2f(n
2) 2n− 1 n

5 n + f(n
2) 2n− 1 n

6 1 + f(n− 1) n n

7 log2(n) + 2f(n
2) 3n− log2(n)− 2 n

8 n + 2f(n
2) n(log2(n) + 1) n log(n)

9 log2(n) + f(n− 1) log2(n!) + 1 n log(n)

10 n log2(n) + 2f(n
2) n(1

2 log2(n)(log2(n) + 1) + 1)n log2(n)

11 n + f(n− 1) 1
2n(n + 1) n2

12 n2 + 2f(n
2) n(2n− 1) n2

13 n2 + f(n− 1) 1
6n(n + 1)(2n + 1) n3

14 1 + 2f(n− 1) 2n − 1 2n

15 n + 2f(n− 1) 2n+1 − n− 2 2n

With the exception recurrences 2,6,9,11, and 13, which are simple sums, we
proceed to establish the results of the table in the following examples. In all
of the examples the the function satisfying the given recurrence also satisfies
f(1) = 1.

∗f(1) = 1
∗∗equality holds only for n in the lattice Nβ of of inverse compositions,

Nβ = {1, β[−1](1), β[−2](1), . . . , },

where β(n) ∈ {log(n), n
2

, n− 1, n
c
, n− c}.

102 c©2003 Steven Louis Davis

Example 6.1. For f(n) = 1 + f(n
2), f(n) ' log(n).

f(n) = 1 + f
(n

2

)
= 2 + f

(n

22

)
...

= k + f
(n

2k

)
For n

2k = 1 we have f(n) = k + 1 = log2(n) + 1.

Example 6.2. For f(n) = 1
n + f(n− 1), f(n) ' log(n).

The solution f(n) =
∑n

i=1
1
i is immediate. Comparing the sum with the definite

integrals of 1
x we have the upper bound

n∑
i=1

1
i

= 1 +
n∑

i=2

1
i

< 1 +
∫ n

1

1
x

dx = 1 + ln(n),

and the lower bound

n∑
i=1

1
i

>

∫ n+1

1

1
x

dx = ln(n + 1),

which by Theorem 2.6.1 has the same order as ln(n).

Example 6.3. For f(n) = log2(n) + f(n
2), f(n) ' log2(n).

f(n) = log2(n) + f
(n

2

)
= log2(n) + log2

(n

2

)
+ f

(n

22

)
= 2 log2(n)− 1 + f

(n

22

)
= 3 log2(n)− 1− 2 + f

(n

23

)
...

= k log2(n)−
k−1∑
i=1

+f
(n

2k

)
= k log2(n)− (k − 1)k

2
+ f

(n

2k

)
For n

2k = 1 we have k = log2(n) and

f(n) = log2
2(n)− 1

2
(log2

2(n)− log2(n)) + 1.

Constructive Induction 103

Example 6.4. For f(n) = 1 + 2f(n
2), f(n) ' n.

f(n) = 1 + 2f
(n

2

)
= 1 + 2

(
1 + 2f

(n

22

))
= 1 + 2 + 22f

(n

22

)
= 1 + 2 + 22 + 23f

(n

23

)
...

=
k−1∑
i=0

2i + 2kf
(n

2k

)

For n
2k = 1 we have n = 2k and

f(n) =
k∑

i=0

2i = 2k+1 − 1 = 2n− 1.

Example 6.5. For f(n) = n + f(n
2), f(n) ' n.

f(n) = n + f
(n

2

)
= n +

n

2
+ f

(n

22

)
= n +

n

2
+

n

22
+ f

(n

23

)
...

= n
k−1∑
i=0

(
1
2

)i

+ f
(n

2k

)

For n
2k = 1 we have n = 2k and

f(n) = 1 + n
k−1∑
i=0

(
1
2

)i

= 1 + n

(
1
2k − 1
1
2 − 1

)
.

104 c©2003 Steven Louis Davis

Example 6.6. For f(n) = log2(n) + 2f(n
2), f(n) ' n.

f(n) = log2(n) + 2f
(n

2

)
= log2(n) + 2 log2

(n

2

)
+ 22f

(n

22

)
= log2(n) + 2 log2

(n

2

)
+ 22 log2

(n

22

)
+ 23f

(n

23

)
...

=
k−1∑
i=0

2i log2

(n

2i

)
+ 2kf

(n

2k

)
For n

2k = 1 we have k = log2(n) and

f(n) = 2k +
k−1∑
i=0

2i log2

(n

2i

)
= n + log2(n)

k−1∑
i=0

2i −
k−1∑
i=0

i2i

= n + log2(n)(2k − 1)− ((k − 2)2k + 2)
= n + (n− 1) log2(n)− (log2(n)− 2)n− 2
= 3n− log2(n)− 2

Example 6.7. For f(n) = n + 2f(n
2), f(n) ' n log(n).

f(n) = n + 2f
(n

2

)
= n + 2

(n

2
+ 2f

(n

22

))
= 2n + 22

(n

22
+ 2f

(n

23

))
= 3n + 23f

(n

23

)
...

= kn + 2kf
(n

2k

)
For n

2k = 1 we have n = 2k, k = log2(n) and

f(n) = n(log2(n) + 1).

Constructive Induction 105

Example 6.8. For f(n) = n log2(n) + 2f(n
2), f(n) ' n log2(n).

f(n) = n log2(n) + 2f
(n

2

)
= n log2(n) + 2

[n
2

log2

(n

2

)
+ 2f

(n

22

)]
= n

[
log2(n) + log2

(n

2

)]
+ 22

[n

22
log2

(n

22

)
+ 2f

(n

23

)]
= n

[
log2(n) + log2

(n

2

)
+ log2

(n

22

)]
+ 23f

(n

23

)
...

= n
k−1∑
i=0

log2

(n

2i

)
+ 2kf

(n

2k

)

For n
2k = 1 we have n = 2k, k = log2(n) and

f(n) = n

[
1 +

k−1∑
i=0

log2

(n

2i

)]

= n

[
1 + k log2(n)−

k−1∑
i=0

i

]

= n

[
1 + log2

2(n)− (k − 1)k
2

]
= n

[
1
2

log2(n)(log2(n) + 1) + 1
]

Example 6.9. For f(n) = n2 + 2f(n
2), f(n) ' n2.

f(n) = n2 + 2f
(n

2

)
= n2 + 2

[(n

2

)2

+ 2f
(n

22

)]
= n2(1 +

1
2
) + 22

[(n

22

)2

+ 2f
(n

23

)]
...

= n2
k−1∑
i=0

1
2i

+ 2kf
(n

2k

)

106 c©2003 Steven Louis Davis

For n
2k = 1 we have n = 2k, k = log2(n) and

f(n) = n2
k−1∑
i=0

1
2i

+ 2k

= n2

(
1
2k − 1
1
2 − 1

)
+ n

= n(2n− 1)

Example 6.10. For f(n) = 1 + 2f(n− 1), f(n) ' 2n.

f(n) = 1 + 2f(n− 1)
= 1 + 2(1 + 2f(n− 2))
= 1 + 2(1 + 2(1 + 2f(n− 3)))

= 1 + 2 + 22 + 23f(n− 3)
...

=
k−1∑
i=0

2i + 2kf(n− k)

For n− k = 1 we have k = n− 1 and f(n) =
∑k

i=0 2i = 2n − 1.

Example 6.11. For f(n) = n + 2f(n− 1), f(n) ' 2n.

f(n) = n + 2f(n− 1)
= n + 2(n− 1 + 2f(n− 2))
= n + 2(n− 1 + 2(n− 2 + 2f(n− 3)))
= n + 2(n− 1 + 2(n− 2 + 2(n− 3 + 2f(n− 4))))

= n(1 + 2 + 22 + 23)− (2 + 23 + 3 · 23) + 24f(n− 4)
...

= n
k−1∑
i=0

2i −
k−1∑
i=0

i2i + 2kf(n− k)

For n− k = 1 we have k = n− 1 and using Theorem 1.7.4, f(n) = n(2k − 1)−
((k − 2)2k + 2) + 2k = 2n+1 − n− 2.

Fast Exponentiation 107

6.2 Fast Exponentiation

Another strikingly simple use of the Divide and Conquer technique yields a
fast exponentiation algorithm. Based on the fact that every power is either a
square or is one factor away from a square we can compute powers by doing
mostly squaring with an occasional additional single factor multiplication. To
illustrate, consider the computation of 319. Using a simple iterative approach
would accumulate the result at a cost of 19 multiplications. On the other hand
we can factor the computation as follows

319 = 3(318)

= 3((39)2)

= 3((3(38)2)

= 3((3((34)2)2)

= 3((3(((32)2)2)2)

Here there are only 6 multiplications. This technique, shown in Figure 6.3 is
easily coded. Though illustrated here only for integers, the technique can be
applied to almost any type of multiplication including matrices.

int fast_exp(int x, int n){
if(n==0)

return 1.0;
else if(n%2)

return x*fast_exp(x,n-1);
else

return(square(fast_exp(x,n/2));
}

Figure 6.3: Fast Exponentiation Algorithm

In the worst case there is an additional factor multiplication interleaved with
each squaring giving a time complexity of

W (n) =

{
1 + W (n

2) , n > 1
1 , n = 1

Recognizing this as recurrence #1 from table 6.1 the solution is log time.
Aware of fast exponentiation, one can easily make a critical design mistake

in its application in embedded problems. Consider the problem of polynomial
evaluation, that is, given a polynomial

p(x) = a0 + a1x + a2x
2 + · · ·+ anxn,

108 c©2003 Steven Louis Davis

compute its value for a given value of x. A naive approach evaluating term
by term appears to offer obvious support for the fast exponentiation algorithm.
Comparing the two algorithms in Figure 6.4,

float npe_se(int n,float a[],float x){
float r=a[0];
for(int i=1;i<=n;i++)

r=r+a[i]*slow_exp(x,n);
return r;
}

float npe_fe(int n,float a[],float x){
float r=a[0];
for(int i=1;i<=n;i++)

r=r+a[i]*fast_exp(x,n);
return r;
}

Figure 6.4: Termwise Polynomial Evaluation Algorithms

one has

Tnpe se(n) '
n∑

i=1

i ' n2,

while

Tnpe fe(n) '
n∑

i=1

log(i) ' n log(n),

giving preference to npe fe. There is however a better organization of the the
solution which removes the need for exponentiation altogether. Consider the
following representation for our polynomial,

p(x) = a0 + x(a1 + a2x + a3x
2 + · · ·+ anxn−1)

= a0 + x(a1 + x(a2 + a3x + · · ·+ anxn−2))
= a0 + x(a1 + x(a2 + x(a3 + · · ·+ xan) . . .))

This representation is easily coded giving the algorithm of Figure 6.5 which is
clearly of order n besting either of the two algorithms relying on exponentiation.

Fast Exponentiation 109

float pe3(int n,float a[],float x){
float r=a[n];
for(int i=n;i>0;i--)
r=x*r+a[i-1]

return r;
}

Figure 6.5: Termwise Polynomial Evaluation Algorithms

110 c©2003 Steven Louis Davis

6.3 Sorting Arrays

Here we examine the high performance comparison based sort techniques. Some
of the elementary sorts which will not be examined include insertion, bubble, and
shell sorting. All of these perform in n2 time and work in place, that is without
requiring extra memory. It is possible to improve on the order for sorting but not
by much. We begin by stating without proof an important theorem concerning
the behavior of sorts based on atomic comparison of keys. Specialized sorts such
as Radixsort which break the keys down for special comparisons are outside the
scope of the theorem.

Theorem 6.3.1. No sort based on the atomic comparison of keys can perform
in better than n log(n) time.

As justification we observe that given n keys the sorted list of keys could be any
one of the n! permutations. Since any comparison can only reduce by half the
remaining number of comparisons a lower bound on the number of comparisons
is the number of times n! can be halved before reducing the number of keys to
a single element. This number is thus log2(n!) which we have seen in Example
2.14 with order ' n log(n).

Since n log(n) time is nearly linear for many practical values of n these sorts
do constitute a significant improvement in practical terms.

6.3.1 Mergesort

Merge sorting is the only technique which will require extra memory, and its
analysis will be the only one that includes both time and memory complexity.
The technique is based on a simple method for combining two sorted arrays
into a single sorted array. If confronted by two piles of keys, each stack being
already sorted, one forms a third stack by examining the two keys on top of the
stacks and choosing the key of lesser order to be the next key in the combined
stack. This is referred to as a merging operation and described formally by the
algorithm in Figure 6.6.

The first loop does the actual merging and the remaining loops perform
cleanup on which ever stack is not exhausted in the merge loop. If the array C[]
has size n then the loops all together account for moving all of these elements.
The order of the merge operation is thus n. We now obtain the sorting algorithm
by dividing the array into two subarrays, sorting those subarrays with recursive
calls and merging the sorted results. The algorithm is given in Figure 6.7.
Observing n array element allocations, a size n initialization loop, two loops
for splitting the n elements of the whole array, one merge operation and two
recursive calls for half size subarrays, the time complexity of the mergesort
algorithm is given by the elementary recurrence

T (n) =

{
n + 2T (n

2) ,n > 1
1 ,n = 1

.

Sorting Arrays 111

void merge(int A[],int a,int B[],int b,int C[]){
int i=0,j=0,k=0;
while(i<a&&j<b)

if(A[i]<B[j])
C[k++]=A[i++];

else
C[k++]=B[j++];

while(i<a)
C[k++]=A[i++];

while(j<b)
C[k++]=B[j++];

}

Figure 6.6: Merge Algorithm

void mergesort(int C[],int n){
if(n>1){

int h=n/2;
int A[h],B[n-h];
for(int i=0;i<h;i++)

A[i]=C[i];
for(int i=0;i<n-h;i++)

B[i]=C[i+h];
mergesort(A,h);
mergesort(B,n-h);
merge(A,h,B,n-h,C);
}

}

Figure 6.7: Mergesort

which is quickly recognized as recurrence #8 from table 6.1 having order n log(n).
It is clear that mergesort uses at least as much extra memory as the original
array to store the copies made by the preliminary loops. Since mergesort im-
mediately stores the array elements in two half size arrays and then calls itself
on one at a time (after whose completion the memory is released), the memory
complexity of the mergesort algorithm is given by the elementary recurrence

M(n) =

{
n + M(n

2) ,n > 1
1 ,n = 1

.

which is recurrence #5 with order n.

112 c©2003 Steven Louis Davis

6.3.2 Selectionsort

We continue with one of the elementary n2 order sorts, the selection sort from
which two of the high performance sorts can, in a manner of speaking, be
derived. Selectionsort is not a Divide and Conquer Algorithm and is being
presented only as a basis for deriving the Quicksort and Heapsort algorithms.
The selectionsort strategy basically stated is to find a maximal element ai for
the whole array, exchange it with an, and continue to repeat this process to
find maximal elements for the arrays a[1..n− 1], a[1..n− 2], . . . , a[1..2], thereby
depositing the maxima in positions an−1, an−2, . . . , a2. In this way each ele-
ment finds its correct position as one of the maxima found. The selectionsort
algorithm is given in Figure 6.8.

void selectionsort(int a[],int n){
for(int i=n;i>1;i--)

exchange(find_max(a,i),a[i]);
}

Figure 6.8: Selectionsort

Assuming the obvious i order sequential scan algorithm for finding the maximum
of i elements, the order of selectionsort is given by

T (n) =
n∑

i=2

i

= −1 +
n∑

i=1

i

= −1 +
1
2
n(n + 1)

' n2

6.3.3 Quicksort

Perhaps the most fascinating sorting technique due both to its ingenuity and
performance is the Quicksort algorithm attributed to C. Hoare. This approach
turns selection sorting inside out; whereas selection sort makes passes over ever
smaller subarrays identifying a maximal element which then is placed at the end
of the subarray, Quicksort takes an arbitrary element and identifies its correct
final position, a process called partitioning, which by its nature divides the array
into two subarrays on either side of the correctly positioned element (henceforth
called the pivot element). If the array elements are randomly distributed then
the positioned element lands on average in the middle of the array yielding two
subarrays of half the original size which can then be sorted. For example, the
array:

Sorting Arrays 113

41 87 16 39 25 44 23 72 28

could after partitioning using the last element yielding the array:

16 25 23 28 41 87 39 44 72

The subarrays (16, 25, 23) and (41, 87, 39, 44, 72) can then be sorted using re-
cursive calls. The actual distribution of elements on either side of the pivot
element depends on the partitioning strategy. Other possible partitionings for
the chosen pivot include:

25 23 16 28 44 87 72 41 39

and

16 25 23 28 87 44 41 72 39 .

Given a working partition algorithm the overall technique is trivialy coded as
shown in Figure 6.9 where the initial call to sort an n-element array a[0..n− 1]
would be quicksort(a, 0, n− 1).

void quicksort(int a[],int left,int right){
if(left<right){

int p=partition(a,left,right);
quicksort(a,left,p-1);
quicksort(a,p+1,right);
}

}

Figure 6.9: Hoare’s Quicksort Algorithm

If not coded with care the partitioning algorithm can require successive data
shifting at the cost of efficiency of noticeable order difference. The partition
algorithm given in Figure 6.10 employs only a single pass over the array being
partitioned by using exchanges only. Its order is easily seen to be n. This
partition algorithm also selects the right-most element as the pivot.

Quicksort ’s behavior is quite dependent on the distribution of the keys being
sorted. To illustrate we consider two particular arrays and the time complexity
analyses they suggest. First we examine an array where the distribution of keys
is such that each pivot element is placed at the midpoint of its subarray by
partitioning. For example the following array has the stated property.

63 59 51 84 92 57 98 16 32 46 33 25 19 31 48 .

114 c©2003 Steven Louis Davis

int partition(int a[],int left,int right){
int j=-1;
for(int i=left;i<right;i++)

if(a[i]<a[right])
exchange(a[++j],a[i]);

exchange(a[++j],a[right]);
}

Figure 6.10: Partitioning Algorithm

For such distributions the time complexity is given by the elementary recurrence

T (n) =

{
n + 2T (n

2) ,n > 1
1 ,n = 1

which is elementary recurrence #8 of order n log(n). The skeptical reader may
have suspected that some contrivance has been employed to achieve the above
distribution of elements.

We next consider sorted arrays of n elements. In this case the pivot element is
already correctly placed resulting in an n−1 element left subarray and an empty
right subarray. The same behavior holds true for each subarray to be sorted
subsequently. The time complexity is then given by the elementary recurrence

T (n) =

{
n + T (n− 1) ,n > 1
1 ,n = 1

which is elementary recurrence #11 of order n2. We will next show that these
do in fact characterize the best and worst cases for Quicksort ’s performance.
Given that Quicksort achieves n log(n) for real examples (where the pivot ele-
ments equally divide the subarrays), Theorem 6.3.1 allows us to conclude that
its best case time is

Bqs(n) ' n log(n).

We deal with the worst case similarly, by way of a theorem bounding worst case
time.

Theorem 6.3.2. Wqs(n) � n2.

Proof. Use induction on n to establish the inequality W (n) ≤ n(n−1)
2 . First es-

tablish the base case for n = 0 for which W (0) = 0, and of course 0(0− 1)/2 = 0.
Now assume the (strong) inductive hypothesis, that W (k) ≤ k(k−1)

2 for all k ≤ n,
and proceed to establish the inequality for k = n+1. For some p ∈ {1, 2, 3, ..., n + 1},

W (n + 1) = n + W (p− 1) + W (n + 1− p)

.

Sorting Arrays 115

Since p− 1 ≤ n and n+1− p ≤ n, both W terms on the right may be rewritten
using the inductive hypothesis:

W (n + 1) ≤ n +
(p− 1)(p− 1)

2
+

(n + 1− p)(n− p)
2

= n +
p2 − 3p + 2 + n2 − 2np + p2 + n− p

2

For the desired inequality we must have:

2n + p2 − 3p + 2 + n2 − 2np + p2 + n− p ≤ n2 + n, or

2n + 2p2 − 4p + 2− 2np ≤ 0, or

p2 − 2p + 1 ≤ np− n, or

(p− 1)2 ≤ n(p− 1)

which is certainly true for p = 1. For p > 1 we may divide the inequality by
(p− 1) to obtain p− 1 ≤ n.

Having established that Wqs(n) is bounded above by order n2, and having
demonstrated an example (the sorted distribution) where this behavior is achieved
we have established that

Wqs(n) ' n2.

We now turn to the average case analysis. Before proceeding we will need
a theorem relating the orders of similarly defined recurrences. To facilitate
the discussion it will be necessary to introduce a general form for elementary
recurrences. These are the functions f characterized completely for nonnegative
nondecreasing functions g, h by

f(n) =

{
g(n) + h(n)f(β(n)), n > 1,

1, n = 1,
(6.6)

where β(n) is one of the simple functions such as n− 1 or n
2 .

The theorem basically states that for two recurrences differing only by the
function g, equivalent order of the functions f is determined on the basis of
equivalent orders of the functions g. We do most of the work in a preliminary
lemma.

Lemma 6.3.1. If fi(n) = gi(n) + h(n)fi(β(n)) where g1 � g2 then f1 � f2.

Proof. By Theorem 2.3.2 we may choose n0 and c > 0 such that g1(n) ≤ cg2(n)
for n ≥ n0. Clearly gi ' Gi where Gi = 0 on [0, n0] and agrees with gi for n >
n0. We prove the result for the corresponding restrictions Fi = fi|{n0,n0+1,...}
by induction.

116 c©2003 Steven Louis Davis

First, F1(n0) = G1(n0) = 0 = G2(n0) = F2(n0), thus F1(n0) ≤ cF2(n0) is
established as a base case. Assuming F1(n) ≤ cF2(n) for n ≥ n0 we have

F1(β−1(n)) = G1(β−1(n)) + h(β−1(n))F1(n)

≤ cG2(β−1(n)) + h(β−1(n))F1(n)

≤ cG2(β−1(n)) + ch(β−1(n))F2(n)

= cF2(β−1(n))

As this holds for all n, another apeal to Theorem 2.3.2 establishes the desired
result.

Theorem 6.3.3. If fi(n) = gi(n) + h(n)fi(β(n)) where g1 ' g2 then f1 ' f2.

Proof. Since g1 ' g2 we have g1 � g2 and g2 � g1, therefore by the lemma,
f1 � f2, and f2 � f1, that is, f1 ' f2.

Theorem 6.3.4. Aqs(n) ' nlog(n).

Proof. For quicksort ’s average case we will use Theorem 1.6.1 and average all
possible running times given by the possible values of the final pivot position
resulting from any partition. Thus we require the expected value of the function

T (n) = n + T (p− 1) + T (n− p)

of the random variable p taking values in {1, 2, ..., n}:

A(n) = E[n + A(p− 1) + A(n− p)]

=
[n + A(0) + A(n− 1)] + [n + A(1) + A(n− 2)] + [n + A(2) + A(n− 3)] + ... + [n + A(n− 1) + A(0)]

n

= n +
2
n

n−1∑
i=0

A(i)

Then,

nA(n) = n2 + 2
n−1∑
i=0

A(i),

(n + 1)A(n + 1) = (n + 1)2 + 2
n∑

i=0

A(i),

(n + 1)A(n + 1)− nA(n) = (n + 1)2 − n2 + 2A(n)

Rearranging a bit yields:

(n + 1)A(n + 1) = 2n + 1 + (n + 2)A(n),
A(n + 1)

n + 2
=

2n + 1
(n + 1)(n + 2)

+
A(n)
n + 1

Sorting Arrays 117

Now we define g(n) = A(n+1)
n+2 and note the similarity between the resulting

recurrence for g:

g(n) =
2n + 1

(n + 1)(n + 2)
+ g(n− 1)

and the elementary recurrence f (#2 from Table 6.1). In fact, since

lim
n→∞

1
n

2n+1
(n+1)(n+2)

=
1
2
,

f and g have the same order by Theorem 6.3.3; that is, A(n+1)
n+2 ' log(n). By

Theorem 2.6 we have A(n)
n+1 ' log(n) and by Theorem 2.1.2, A(n) ' n log(n).

6.3.4 Heapsort

From a grand perspective, heapsort is a superficial modification of selectionsort.
The process of selecting maxima with a sequential scan is replaced by one that
extracts the maximum of a heap. Since this maximum is always at the top of
a heap the work is shifted to the process of making and remaking heaps. As
can be seen by comparing Figures 6.8 and 6.11, the algorithms are structurally
similar.

void heapsort(int a[],int n){
make_heap(a,0,n);
for(int i=n;i>0;){

exchange(a[0],a[i]);
fix_heap(a,0,--i);
}

}

Figure 6.11: Heapsort

Here the array has first been mapped onto a left-balanced binary tree as de-
scribed in section 1.5. The operation make heap forms the binary tree into a
heap, that is, a tree where the root of each subtree is maximal for that subtree.
We shall see that a heap damaged by the modification of its root node is easily
restored to the heap condition, this restoration being the task of the operation
fix heap. Like selectionsort, heapsort works on ever decreasing heaps, exchang-
ing the maximum with the end of the working heap which then being no longer
a heap is restored before the next iteration.

To make a heap recursively is very simple if the fix heap routine is available,
for then one makes both left and right subtrees first into heaps and then fixes
the whole heap. The code appears in Figure 6.12.
Each test simply makes sure the appropriate tree is nonempty before proceeding.
Now all that is left is the heap fixing routine. Here we basically do a binary

118 c©2003 Steven Louis Davis

void make_heap(int a[],int root,int size){
if(root<=size){

int left=2*root,right=left+1;
if(left<=size){

make_heap(a,left,size);
if(right<=size)

make_heap(a,right,size);
fix_heap(a,root,size);}}}

Figure 6.12: Makeheap

search where the visit at each node makes sure to promote the largest of three
elements, that at the current node and those rooting the left and right subtrees
at that node. Again, some tests just check for nonempty subtrees.

void fix_heap(char *a[],int root,int n){
int left=2*root,right=left+1,max_index=root;
if(left<=n){

if(string(a[left])>string(a[max_index]))
max_index=left;

if(right<=n&&string(a[right])>string(a[max_index]))
max_index=right;

if(max_index!=root){
exchange(a,max_index,root);
fix_heap(a,max_index,n);}}}

Figure 6.13: Fixheap

Let Whs(n),Wmh(n), and Wfh(n) be the worst case time complexities of
heap sort, make heap, and fix heap respectively. Examining heap sort we see
that

Whs(n) ' Wmh(n) +
1∑

i=n

Wfh(i). (6.7)

For make heap we get

Wmh(n) ' Wfh(n) + 2Wmh(
n

2
), (6.8)

and for fix heap we have

Wfh(n) '

{
1 + Wfh(n

2) , n > 1
1 , n = 1

which yields Wfh(n) ' log(n) (recurrence #1 of Table 6.1). Substituting, 6.8
becomes

Sorting Arrays 119

Wmh(n) ' log(n) + 2Wmh

(n

2

)
,

which yields Wmh(n) ' n (recurrence #7 of Table 6.1). Finally 6.7 becomes

Whs(n) ' n +
1∑

i=n

log(i)

= n + log(n!)
' n log(n).

Bing both an in-place sort and having worst case time optimal makes heapsort
the best comparison based sort considered here.

120 c©2003 Steven Louis Davis

6.4 Simplifying Recurrences

Theorem 6.3.3 used in the analysis of Quicksort is an extremely valuable tool
capable of saving much time in analysis. We restate it here:

Theorem 6.4.1. If fi(n) = gi(n) + h(n)fi(β(n)) where g1 ' g2 then f1 ' f2.

It says that just as we have learned to recognize and use the simplest form
for a time complexity function in representing its order, we can do the same
for the nonrecursive part of a recurrence before solving. This means that for
example, the recurrence f(n) = 3n2 + n logs(n)− n + 2 log2(n) + 2f(n

2) which
would be unpleasant to solve exactly, has the same order as the recurrence
f1(n) = n + 2f(n

2). A few examples should serve to build an appreciation of
the theorem.

Example 6.12. For f(n) = n + 3 log2(n) + f(n
2), f(n) ' n.

First we establish the result using constructive induction directly. We have

f(n) = n + 3 log2(n) + f
(n

2

)
= n + 3 log2(n) +

n

2
+ 3 log2

(n

2

)
+ f

(n

22

)
= n

(
1 +

1
2

)
+ 3

[
log2(n) + log2

(n

2

)]
+ f

(n

22

)
= n

(
1 +

1
2

+
1
22

)
+ 3

[
log2(n) + log2

(n

2

)
+ log2

(n

22

)]
+ f

(n

23

)
...

= n
k−1∑
i=0

1
2i

+ 3
k−1∑
i=0

log2

(n

2i

)
+ f

(n

2k

)
For n

2k = 1 we have

f(n) = n
k−1∑
i=0

1
2i

+ 3
k−1∑
i=0

log2

(n

2i

)
+ 1

= n

(
1
2k − 1
1
2 − 1

)
+ 3

k−1∑
i=0

(log2(n)− i) + 1

= 2(n− 1) + 3k log2(n)− 3
k−1∑
i=0

i + 1

= 2n− 1 + 3 log2
2(n)− 3

(k − 1)k
2

= 2n +
3
2

log2
2(n) +

1
2

log2(n)− 1

' n

Simplifying Recurrences 121

Compare this analysis with that already done for the simplified recurrence f(n) =
n + f(n

2) given in Example 5.

For some other kinds of functions, the theorem is indispensable. Consider
the function f(n) =

√
n2 − 1 + f(n

2). Constructive induction eventually yields

f(n) = 1 +
log2(n)−1∑

i=0

√(n

2i

)
− 1.

With some work it could be shown that this sum is of order n, but it is much
simpler to recognize that

√
n2 − 1 ' n and solve the simpler recurrence, again

that of Example 5. To see that
√

n2 − 1 ' n, observe that

lim
n→∞

√
n2 − 1

n
= lim

n→∞

√
1− 1

n2
= 1.

Example 6.13. For f(n) = log2(2n + 3) + 2f(n
2), f(n) ' n log(n).

Finding the limit

lim
n→∞

log2(2n + 3)
n

= lim
n→∞

log2(2n + 3)
log2(2n)

L′

= lim
n→∞

1
(2n+3) ln(2)

1
2n ln(2)

= lim
n→∞

2n

2n + 3

= lim
n→∞

1
1 + 3

2n

= 1

Thus f(n) simplifies to f1(n) = n + 2f(n
2) which is solved in Example 8 having

order n log(n).

122 c©2003 Steven Louis Davis

6.5 Fast Fourier Transform

6.5.1 The Discrete Fourier Transform

Let F be a scalar field, ρ ∈ F , and Vρ = (ρij)n−1
i,j=0 the Vandermonde matrix for

ρ. Given f = (fi)n−1
i=0 ∈ Fn, the Discrete Fourier Transform of f with respect

to ρ is given by the product

f̂ = Vρf =

n−1∑
j=0

ρijfj

n−1

i=0

.

If ρ is a principle nth root of unity in F , then the mapping f → f̂ is invertible,
that is, Vρ has an inverse. Thus the vectors f are in a one-to-one correspon-
dence with their transforms f̂ . This correspondence is a homomorphism for two
different types of products on Fn, one being the simple componentwise product
given for f = (fi)n−1

i=0 and g = (gi)n−1
i=0 by

fg = (figi)n−1
i=0 .

If f and g represent the values of two functions at n distinct points then this
product would represent the values of the product of those functions at the same
points. The other product is the vector convolution given by

f ∗ g =

n−1∑
j=0

fjgi−j

n−1

i=0

.

The homomorphism is given by f̂ ∗ g = f̂ ĝ, that is, the transform of the convo-
lution is the componentwise product of the transforms. Appendix A.1 provides
justifications of the above theory.

Computation time is not preserved across the homomorphism as one can
see, the simple product is an order n operation while the convolution is and
order n2. operation. The correspondence of products offers another way of
finding the convolution using transforms. Given f, g, find their transforms, f̂ , ĝ,
form the componentwise product f̂ ĝ, and then find the inverse transform. If
the transform and inverse transform operations can be done in better than n2

time, this approach constitutes an improvement.

f, g −−−−→ f ∗ g

Vρ

y xV −1
ρ

f̂ , ĝ −−−−→ f̂ ĝ

Figure 6.14: Computing the Convolution using the DFT.

Fast Fourier Transform 123

It is somewhat more familiar to realize the vector convolution as a polyno-
mial product. Denoting by f(x) and g(x) the polynomials having f and g as
coefficient vectors,

f(x) =
n−1∑
i=0

fix
i, and g(x) =

n−1∑
i=0

gix
i

respectively, the polynomial product of f(x) and g(x) is given by

f(x)g(x) =
n−1∑
i=0

fix
i

n−1∑
j=0

gjx
j

=
n−1∑
i=0

n−1∑
j=0

figjx
i+j

=
n−1∑
i=0

n−1+i∑
k=i

figk−ix
k, k = i + j

This is the wrapped polynomial product. For simpler illustration consider
f, g ∈ Fn

0 = {(fi)n−1
i=0 : fi = 0, i ≥ n

2 }. Then the sum reduces to the familiar
polynomial product

n−1∑
i=0

i∑
j=0

fjgi−jx
i

where the degree of the product is the sum of the degrees of the factors.
We will now illustrate the process depicted in Figure 6.14. Let n = 4, ρ = 4,

and m = 17. Then ρ is a principle nth root of unity in Zm, that is, for arithmetic
modulo 17, and n−1 = 13. The transform matrix is given by

Vρ =



1 1 1 1

1 4 −1 −4

1 −1 1 −1

1 4 −1 4


,

and its inverse by

(Vρ)−1 =
1
n

Vρ−1 = 13



1 1 1 1

1 −4 −1 4

1 −1 1 −1

1 4 −1 −4


.

124 c©2003 Steven Louis Davis

Let f = (2, 3, 0, 0), g = (1, 1, 5, 0), with associated polynomials f(x) = 3x + 2,
g(x) = 5x2 + x + 1. Then polynomial product of is given by f(x)g(x) = 15x3 + 13x2 + 3x + 2.
Computing transforms we have

f̂ = Vρf =



1 1 1 1

1 4 −1 −4

1 −1 1 −1

1 4 −1 4





2

3

0

0


=



5

−3

−1

7


,

and

ĝ = Vρg =



1 1 1 1

1 4 −1 −4

1 −1 1 −1

1 4 −1 4





1

1

5

0


=



7

0

5

8


.

The componentwise product is

f̂ ĝ =



5

−3

−1

7





7

0

5

8


=



1

0

−5

−5


,

and its inverse transform

(Vρ)−1(f̂ ĝ) = 13



1 1 1 1

1 −4 −1 4

1 −1 1 −1

1 4 −1 −4





1

0

−5

−5


=



2

5

13

15


,

which is the coefficient vector for f(x)g(x).

6.5.2 The Fast DFT Algorithm

Let k > 1, n = 2k, and ρ a principle nth root of unity. Except for the first,
each sum in the transform f̂ = (

∑n−1
j=0 fjρ

ij)n−1
i=0 has a number of multiplica-

tions bounded by n, thus the computation of f̂ normally proceeds in order n2

Fast Fourier Transform 125

time. Now define g = (f0, f2, f4, . . . , fn−2), h = (f1, f3, f5, . . . , fn−1), so that
f(x) = g(x2) + xh(x2) where g(x), h(x) are the polynomials having g, h as coef-
ficient vectors. For m = n

2 , θ = ρ2, we have θm = (ρ2)m = ρn = 1, so that θ is an
mth root of unity and can be used to define Fourier Transforms using the matrix
Vθ. θ will also be a principle mth root of unity. Since f(ρi) = g(θi) + ρih(θi),
we have

Vρf =
(
g(θi) + ρih(θi)

)n−1

i=0

=



g(1) + h(1)

g(ρ2) + ρh(ρ2)

g(ρ4) + ρ2h(ρ4)
...

g(ρn−2) + ρ
n
2−1h(ρn−2)

g(ρn) + ρ
n
2 h(ρn)

g(ρn+2) + ρ
n
2 +1h(ρn+2)

g(ρn+4) + ρ
n
2 +2h(ρn+4)
...

g(ρ2n−2) + ρn−1h(ρ2n−2)



=



g(1) + h(1)

g(ρ2) + ρh(ρ2)

g(ρ4) + ρ2h(ρ4)
...

g(ρn−2) + ρ
n
2−1h(ρn−2)

g(1) + ρ
n
2 h(1)

g(ρ2) + ρ
n
2 +1h(ρ2)

g(ρ4) + ρ
n
2 +2h(ρ4)
...

g(ρn−2) + ρn−1h(ρn−2)


Thus the computation of the transform for f ∈ Fn is reduced to the computation
of two transforms for g, h ∈ F

n
2 . The time complexity is then defined by

T (n) =

{
n + 2T (n

2) , n > 1,

1 , n = 1.

which is recurrence #8 from table 6.1 having order n log(n). This may seem
to be quite a lot of work for a small improvement in order, but this particular
improvement cannot be historically understated. It is one of the principle tech-
nologies responsible for the telecommunications revolution of the second half of
the last century.

126 c©2003 Steven Louis Davis

6.6 Exploiting Associations with Recursion

Here we will see two examples where recursion can be used to exploit simple
algebraic associations. Accordingly, both examples are numeric in character
and the straight forward solutions not employing recursion offer no hint at
improvement. These are good examples of situations where simply adopting a
recursive approach will suggest a new path toward solution.

Large Integer Arithmetic 127

6.6.1 Large Integer Arithmetic

Most arithmetic is well accommodated by the hardware of modern computing
machines. There are instances however where the integers dealt with are too
large to be directly manipulated by the machines processors. Since the early
nineties, encryption software has become extremely important for on-line busi-
nesses, being used to insure the privacy of financial transactions. These systems
routinely use integers beyond the machines direct capabilities. While most per-
sonal computers are limited to 32 bit or 64 bit integers, the machine word size,
systems such as RSA typically require 1000 or more bits to guarantee secrecy.
It is a straight forward exercise to write software to manipulate large integers
by breaking them down into machine size pieces stored together in an array and
then using ordinary techniques to manipulate these arrays as a whole. While it
is natural to let the size of the pieces be that of the machine word size, we will
work with arrays of decimal digits for simplicity. Thus a large integer such as
i = 865976394133249617 is stored as an array of 18 decimal digits. To add two
such numbers, one simply adds digit by digit beginning with the least significant
and including carries into the next digit when necessary. The size of the inte-
gers is now limited only by memory if using dynamic arrays or by the maximum
array size chosen in the case of static arrays. The usual restrictions of result
size still apply of course, with sums generally requiring one additional digit for
the last carry while multiples generally require twice the number of digits as the
largest factor. Fixing a maximum digit array size of n, addition of large integers
is clearly an order n operation. The grade school multiplication operation that
multiplies each digit of one number by every digit of the other is an order n2

algorithm. Another special multiplication will be important, that of multiplying
by a power of 10 which involving nothing more than digit shifts is also an order
n operation. It is our goal to improve on the order n2 multiplication algorithm.

We begin with two large integers a =
∑n

i=0 ai10i, and b =
∑n

i=0 bi10i, where
n is odd. Letting k = n+1

2 the following sum shows how to represent our size n
integers using two size n

2 integers.

a =
k−1∑
i=0

ai10i +
n∑

i=k

ai10i

=
k−1∑
i=0

ai10i +
k−1∑
j=0

ak+j10k+j

=
k−1∑
i=0

ai10i + 10k
k−1∑
i=0

ak+i10i

Similarly,

b =
k−1∑
i=0

bi10i + 10k
k−1∑
i=0

bk+i10i.

128 c©2003 Steven Louis Davis

Let

x2 =
k−1∑
i=0

ai10i,

x1 =
k−1∑
i=0

ak+i10i,

x4 =
k−1∑
i=0

bi10i, and

x3 =
k−1∑
i=0

bk+i10i,

so that x1 and x3 are the most significant halves of the digit strings for a and
b while x2 and x4 are the least significant. That is,

a = 10kx1 + x2, and

b = 10kx3 + x4.

The product is then given by

ab = (10kx1 + x2)(10kx3 + x4)

= 10nx1x3 + 10k(x1x4 + x2x3) + x2x4.

Suppose we employ a recursive strategy to multiply our size n numbers by
making recursive calls to compute the four subordinate size n

2 products

p1 = x1x3,

p2 = x1x4,

p3 = x2x3, and
p4 = x2x4.

Denoting the time complexity of this approach by T (n) and noting that the
addition and multiplication by powers of 10 are order n operations we have

T (n) =

{
5n + 4T (n

2) , n > 1
1 , n = 1.

We use constructive induction to solve the recurrence.

Large Integer Arithmetic 129

T (n) = 5n + 4T
(n

2

)
= 5n + 4

[
5 · n

2
+ 4T

(n

22

)]
= 5n + 4 · 5 · n

2
+ 42

[
5 · n

22
+ 4T

(n

23

)]
= 5n(1 + 2 + 22) + 43T

(n

23

)
...

= 5n
k−1∑
i=0

2i + 4kT
(n

2k

)

For n
2k = 1 we have 2k = n and

T (n) = 5n
k−1∑
i=0

2i + 4k

= 5n

(
2k − 1
2− 1

)
+ (2k)2

= 5n(n− 1) + n2

= 6n2 − 5n

which has order n2. Thus a recursive strategy alone produces no benefit for this
new type of large integer multiplication. It is possible to exploit the recurrence
however by reducing the number of recursive calls from 4 to 3. This is achieved
by taking advantage of a 5th product p5 = (x1 + x2)(x3 + x4), and the fact that
two of the needed products p2 and p3 always occur summed. Since

p5 = (x1 + x2)(x3 + x4)
= x1x3 + x1x4 + x2x3 + x2x4

= p1 + p2 + p3 + p4

we have p2 + p3 = p5 − p1 − p4. With only 3 subordinate products for the re-
cursive calls we now have the time complexity

T (n) =

{
8n + 3T (n

2) , n > 1
1 , n = 1.

The extra addition for p5 and the two subtractions accounting for the increase
from 5n to 8n. We use constructive induction to solve the new recurrence.

130 c©2003 Steven Louis Davis

T (n) = 8n + 3T
(n

2

)
= 8n + 3

[
8 · n

2
+ 3T

(n

22

)]
= 8n + 3 · 8 · n

2
+ 32

[
8 · n

22
+ 3T

(n

23

)]
= 8n

[
1 +

3
2

+
(

3
2

)2
]

+ 33T
(n

23

)
...

= 8n
k−1∑
i=0

(
3
2

)i

+ 3kT
(n

2k

)
For n

2k = 1 we have k = log2(n) and

T (n) = 8n
k−1∑
i=0

(
3
2

)i

+ 3k

= 8n

(
(3
2)k − 1
3
2 − 1

)
+ 3k

= 16n

(
3k

n
− 1
)

+ 3k

= 17 · 3k − 16n

= 17 · 3log2(n) − 16n

= 17nlog2(3) − 16n

of order nlog2(3) which is approximately n1.58 ≺ n2. For 1000 bit integers,
roughly 100 decimal digits, the improvement is quite dramatic, 1001.58 ≈ 1478
being only about 15% of 1002. We can also see the early cost of the recursive
approach in the much larger principle coefficient. It is interesting to compare
the two time complexities.
We can see tthat 6n2 − 5n has overtaken 17nlog2(3) − 16n by n = 8. In fact
for n = 6, 6n2 − 5n = 186 and 17nlog2(3) − 16n = 195 so the recursive algo-
rithm actually performs marginally more poorly than the usual algorithm for
up to 6 digit numbers. At n = 7 the two algorithms perform the same with
f(n) = g(n) = 259. This suggests a hybrid approach for the problem. For num-
bers smaller than 8 digits the normal multiplication algorithm can be used and
the recursive algorithm is used otherwise. Such algorithms which solve problem
instances different ways depending on the instance are called adaptive.

Large Integer Arithmetic 131

Table 6.2: compared values for f(n) = 6n2 − 5n and g(n) = 17nlog2(3) − 16n

n f(n) g(n)

1 1 1

2 14 19

3 39 49

4 76 89

5 125 138

6 186 195

7 259 259

8 344 331

132 c©2003 Steven Louis Davis

6.6.2 Strassens Matrix Multiplication

Here we introduce another algebraic manipulation which improves on the or-
der of square matrix multiplication. For square n × n matrices A = (aij)n

i,j=1,
B = (bij)n

i,j=1, the product C = (cij)n
i,j=1 is defined by cij =

∑n
k=1 aikbkj . As

each of the n×n entries cij requires n multiplications, the order of square matrix
multiplication is n3. Now consider matrices for which n = 2k. Each can be par-
titioned into 4 submatrices or minors and the matrix product can be performed
by working with the minor matrices. Denoting by subscripted capitals the four
minors we have

A =



a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann


=

 A11 A12

A21 A22



where

A11 =

 a11 a12

a21 a22

 , A12 =

 a13 a14

a23 a24

 , A21 =

 a31 a32

a41 a42

 ,

A22 =

 a33 a34

a43 a44

 .

Carrying out the multiplication using minors we have

C =

 A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

 ,

that is,

C11 = A11B11 + A12B21,

C12 = A11B12 + A12B22,

C21 = A21B11 + A22B21,

C22 = A21B12 + A22B22.

Having seen how to reduce a problem of size n into 8 subproblems of size n
2 we

naturally investigate a recursive strategy. If T (n) is the cost of the original mul-
tiplication for size n matrices, then for each of the eight minor multiplications
the cost is given by T (n

2). Since the addition of minors involves
(

n
2

)2 component
additions, the time for the recursive strategy is given by

Strassens Matrix Multiplication 133

T (n) =

{
4
(

n
2

)2 + 8T
(

n
2

)
, n > 1

1 , n = 1

=

{
n2 + 8T

(
n
2

)
, n > 1

1 , n = 1.

We proceed to solve using constructive induction.

T (n) = n2 + 8T
(n

2

)
= n2 + 8

[(n

2

)2

+ 8T
(n

22

)]
= n2[1 + 2] + 82T

(n

22

)
= n2[1 + 2] + 82

[(n

22

)2

+ 8T
(n

23

)]
= n2[1 + 2 + 22] + 83T

(n

23

)
...

= n2
k−1∑
i=0

2i + 8kT
(n

2k

)
= n2(2k − 1) + 8k,

n

2k
= 1

= n2(n− 1) + (2k)3

= 2n3 − n2

So again, a recursive approach alone does not yield any improvement over the
straight forward approach. Here too however, there are ways to make use of
rearrangements of sums and products to favor the number of sums over the
number of products. Let 7 new matrices be defined by

D1 = (A11 + A22)(B11 + B22)
D2 = (A21 + A22)B11

D3 = A11(B12 −B22)
D4 = A22(B21 −B11)
D5 = (A11 + A12)B22

D6 = (A21 −A11)(B11 + B12)
D7 = (A12 −A22)(B21 + B22).

Then C can be computed using no further matrix multiplications with

134 c©2003 Steven Louis Davis

C11 = D1 + D4 −D5 + D7,

C12 = D3 + D5,

C21 = D2 + D4, and
C22 = D1 + D3 −D2 + D6.

As each of the new matrices has only one matrix multiplication we now have
the time given by

T (n) =

{
18
(

n
2

)2 + 7T (n
2) , n > 1

1 , n = 1.

=

{
9
2n2 + 7T (n

2) , n > 1
1 , n = 1.

Using Theorem 6.4.1 we may solve the simpler recurrence

T (n) =

{
n2 + 7T (n

2) , n > 1
1 , n = 1.

.

Solving we have

Strassens Matrix Multiplication 135

T (n) = n2 + 7T
(n

2

)
= n2 + 7

[(n

2

)2

+ 7T
(n

22

)]
= n2

[
1 +

7
4

]
+ 72T

(n

22

)
= n2

[
1 +

7
4

]
+ 72

[(n

22

)2

+ 7T
(n

23

)]
= n2

[
1 +

7
4

+
(

7
4

)2
]

+ 73T
(n

23

)
...

= n2
k−1∑
i=0

(
7
4

)i

+ 7kT
(n

2k

)
= n2

[(
7
4

)k − 1
7
4 − 1

]
+ 7k,

n

2k
= 1

=
4
3
n2

[
7k

(2k)2
− 1
]

+ 7k

=
7
3
7k − 4

3
n2

=
7
3
7log2(n) − 4

3
n2

=
7
3
nlog2(7) − 4

3
n2

' nlog2(7)

Since log2(7) < 3 we have obtained an improvement in order (log2(7) ' 2.81).
It has been shown that an even more treacherous association of submatrices
yields a system with only 5 matrix multiplications. This yields an algorithm of
order log2(5) ' 2.32.

136 c©2003 Steven Louis Davis

Chapter Exercises

E 6.1. Write a recurrence relation for the time complexity of the algorithm:

int x(int n){
if(n>1)

return 2*x(n/2);
else

return 1;
}

E 6.2. Write a recurrence relation for the time complexity of the algorithm:

int pfib(int n,int p){
if(n<p)

return 0;
if(n==p)

return 1;
int r=0;
for(int i=n-p;i<n;i++)

r=r+pfib(i,p);
return r;
}

E 6.3. Write a recurrence relation for the time complexity of a merge sort
algorithm that splits three ways.

Solve the recurrence exactly:

E 6.4. f(n) =

{
3 + f(n

2) , n > 1,
1 , n = 1,

E 6.5. f(n) =

{
n + f(n

3) , n > 1,
1 , n = 1,

E 6.6. f(n) =

{
1 + 2f(n

3) , n > 1,
1 , n = 1,

Find the order of the recurrence:

E 6.7. f(n) =

{
3 + 1

n2 + f(n
2) , n > 1,

1 , n = 1,

E 6.8. f(n) =

{
n + 250 + f(n

3) , n > 1,
1 , n = 1,

E 6.9. f(n) =

{
(n+1)(n+2)

(n−1)2 + f(n
2) , n > 1,

1 , n = 1,

Chapter Exercises 137

E 6.10. Partition the array:

39 41 43 88 29 46 16 92 75 86 25 63 12 79 81 24

E 6.11. Fix the heap:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

26 42 46 37 22 45 41 25 19 4 13 17 28 31

E 6.12. Construct a 9 element array of integers on which quicksort will exhibit
its worst case time. [do not use a sorted array as your example]

138 c©2003 Steven Louis Davis

III

Appendices

139

Appendix A

Mathematical Reference

141

142 c©2003 Steven Louis Davis

A.1 Discrete Fourier Transform

For a principle nth root of unity ω 6= 1, each of ω2, ω2, . . . , ωn−1 is also a principle
nth root of unity. Thus each is a root of the polynomial

xn − 1
x− 1

=
n−1∑
i=0

xi,

that is,

n−1∑
j=0

ωij = 0, for i = 1, 2, . . . , n− 1. (A.1)

It is now a simple matter to demonstrate the inverse V −1
ω = 1

nVω−1 . In fact,

(VωVω−1)ij =

(
n−1∑
k=0

(Vω)ik(Vω−1)kj

)
ij

=

(
n−1∑
k=0

ωikω−kj

)
ij

=

(
n−1∑
k=0

ωk(i−j)

)
ij

.

By (A.1) the sum vanishes for i 6= j, and for i = j it reduces to n.
We next demonstrate the homomorphism f̂ ∗ g = f̂ ĝ.

f̂ ∗ g =

n−1∑
j=0

ωij
n−1∑
k=0

fkgj−k

n−1

i=0

=

n−1∑
j=0

n−1∑
k=0

ωijfkgj−k

n−1

i=0

=

n−1∑
j=0

n−1−k∑
l=−k

ωi(k+l)fkgl

n−1

i=0

, l = j − k

=

n−1∑
j=0

ωikfk

n−1−k∑
l=−k

ωilgl

n−1

i=0

=

n−1∑
j=0

ωikfk

n−1∑
l=0

ωilgl

n−1

i=0

= f̂ ĝ.

Discrete Fourier Transform 143

After inspection of the terms, the second sum is seen to be independent of
k thereby justifying the reindexing.

Theorem A.1.1. Given n, ω, both powers of 2, then ω is a principle nth root
of unity in F = Zm for m = ω

n
2 + 1, and 1

n = m− 1
n (m− 1).

Proof.

144 c©2003 Steven Louis Davis

A.2 Binomial Coefficients

Theorem A.2.1. (n− k)
(
n
k

)
= n

(
n−1

k

)
.

Proof.

(n− k)
(

n

k

)
= (n− k)

n!
k!(n− k)!

=
n!

k!(n− k − 1)!

= n
(n− 1)!

k!(n− 1− k)!

= n

(
n− 1

k

)

Theorem A.2.2. k
(
n
k

)
= n

(
n−1
k−1

)
.

Proof.

k

(
n

k

)
= k

n!
k!(n− k)!

=
n!

(k − 1)!(n− k)!

= n
(n− 1)!

(k − 1)!(n− k)!

= n

(
n− 1
k − 1

)

Theorem A.2.3. (a + b)n =
∑n

k=0

(
n
k

)
an−kbk.

Proof. The formula holds trivially for n = 0, 1. Assuming the formula true for

Binomial Coefficients 145

n we shall prove its truth for n + 1. We have

n+1∑
k=0

(
n + 1

k

)
an+1−kbk = an+1 +

n∑
k=1

(
n + 1

k

)
an+1−kbk + bn+1

= an+1 +
n∑

k=1

[(
n

k

)
+
(

n

k − 1

)]
an+1−kbk + bn+1

= an+1 +
n∑

k=1

(
n

k

)
an+1−kbk +

n∑
j=1

(
n

j − 1

)
an+1−jbj + bn+1

= an+1 +
n∑

k=1

(
n

k

)
an+1−kbk +

n−1∑
k=0

(
n

k

)
an−kbk+1 + bn+1

= a

[
an +

n∑
k=1

(
n

k

)
an−kbk

]
+ b

[
n−1∑
k=0

(
n

k

)
an−kbk + bn

]

= (a + b)
n∑

k=0

(
n

k

)
an−kbk

= (a + b)(a + b)n

= (a + b)n+1

Corollary A.2.1.
∑n

k=0

(
n
k

)
= 2n.

Proof. Using a = b = 1 we have

n∑
k=0

(
n

k

)
=

n∑
k=0

(
n

k

)
1n−k1k

= (1 + 1)n

= 2n

Theorem A.2.4.
∑n

k=1 k
(
n
k

)
= n2n−1.

146 c©2003 Steven Louis Davis

Proof.

n∑
k=1

k

(
n

k

)
=

n∑
k=1

n

(
n− 1
k − 1

)
[by Theorem A.2.2]

= n
n∑

k=1

(
n− 1
k − 1

)

= n
n−1∑
j=0

(
n− 1

j

)
[j = k − 1]

= n2n−1 [by Theorem A.2.1]

Theorem A.2.5. ab ≤
(
ab
b

)
≤ (b[a− 1] + 1)b.

Proof. (
ab

b

)
=

(ab)!
b!(ab− b)!

=
ab(ab− 1)(ab− 2)...(ab− b + 1)

b!

=
ab

b

ab− 1
b− 1

ab− 2
b− 2

...
ab− b + 1

1

Each factor is bounded above by ab− b + 1 and below by a.

Lemma A.2.1. For s ≤ r, r−1
s−1 ≥

r
s .

Proof.

−s ≥ −r,

rs− s ≥ rs− r,

s(r − 1) ≥ r(s− 1)

Theorem A.2.6. 2k ≤
(
2k
k

)
≤ (k + 1)k.

Proof. (
2k

k

)
=

(2k)!
(k!)2

=
2k(2k − 1)(2k − 2)...(k + 1)

k!

=
2k

k

2k − 1
k − 1

2k − 2
k − 2

...
k + 1

1

Now apply the lemma to each of these k factors.

Binomial Coefficients 147

Theorem A.2.7. k2k−1 ≤
(
k(2k−1)
2k−1

)
≤ (4k3 − 4k2 − k + 2)2k−1.

Proof. Apply the lemma.

Theorem A.2.8 (Stirling).
(

n
e

)n√
n ' n!.

Proof. We will show that

lim
n→∞

(
n
e

)n√
n

n!
=

1√
2π

.

First,

∫ π
2

0

sinn(x) dx = − cos(x) sinn−1(x)
∣∣π

2

0
+ (n− 1)

∫ π
2

0

sinn−2(x) cos2(x) dx

= (n− 1)
∫ π

2

0

sinn−2(x)(1− sin2(x)) dx

= (n− 1)

(∫ π
2

0

sinn−2(x) dx−
∫ π

2

0

sinn(x) dx

)

so that for In =
∫ π

2
0

sinn(x) dx we have In = (n − 1)(In−2 − In), and hence
In = n−1

n In−2. Then,

I2n =
2n− 1

2n
In−2

=
(2n− 1)(2n− 3)

(2n)(2n− 2)
I2n−4

=
(2n− 1)(2n− 3)(2n− 5)

(2n)(2n− 2)(2n− 4)
I2n−6

=
(2n)(2n− 1)(2n− 2)(2n− 3)(2n− 4)(2n− 5)

(2n)2(2n− 2)2(2n− 4)2
I2n−6

...

=
(2n)!

(n!)2(22)n
I0

=
(2n)!π

(n!)222n+1

148 c©2003 Steven Louis Davis

Also,

I2n+1 =
2n

2n + 1
I2n−1

=
(2n)(2n− 2)

(2n + 1)(2n− 1)
I2n−3

=
(2n)(2n− 2)(2n− 4)

(2n + 1)(2n− 1)(2n− 3)
I2n−5

=
(2n + 1)(2n)(2n− 1)(2n− 2)(2n− 3)(2n− 4)

(2n + 1)2(2n− 1)2(2n− 3)2
I2n−5

...

=
22n(n!)2

(2n + 1)!
I1

=
22n(n!)2

(2n + 1)!

Now, for x ∈ [0, π
2], sin(x) ∈ [0, 1], and therefore,

I2n+1 ≤ I2n ≤ I2n−1.

That is,
22n(n!)2

(2n + 1)!
≤ (2n)!π

(n!)222n+1
≤ 22(n−1)((n− 1)!)2

(2(n− 1) + 1)!
.

From the first inequality we obtain

(22n)2(n!)4

(2n)!(2n + 1)!
≤ π

2
,

and from the second,

nπ

2n + 1
≤ (24n−1)(n!)4

n(2n)!(2n− 1)!

≤ (24n)(n!)4

(2n)!(2n + 1)!
.

Since nπ
2n+1 →

π
2 , and

nπ

2n + 1
≤ (24n)(n!)4

(2n)!(2n + 1)!
≤ π

2
,

it follows that

lim
n→∞

(24n)(n!)4

(2n)!(2n + 1)!
=

π

2
.

Finally, let

Binomial Coefficients 149

a = lim
n→∞

(
n
e

)n√
n

n!
. (A.2)

Then we also have

a = lim
n→∞

(
2n
e

)2n√2n

(2n)!
,

and hence,

1
a2

=
a2

a4
=

[
lim

n→∞
(2n

e)2n√
2n

(2n)!

]2
[

lim
n→∞

(n
e)n√

n

n!

]4

= lim
n→∞

[
(2n

e)2n√
2n

(2n)!

]2
[
(n

e)n√
n

n!

]4
= lim

n→∞

(
2n
e

)4n (2n)(n!)4(
n
e

)4n
n2((2n)!)2

= lim
n→∞

24n+1(n!)4

n((2n)!)2

= lim
n→∞

24n(n!)22(2n + 1)
n(2n)!(2n + 1)!

=
(

lim
n→∞

24n(n!)2

(2n)!(2n + 1)!

)(
lim

n→∞

2(2n + 1)
n

)
= 2π

Thus a = 1√
2π

. The careful reader may have noticed that we have used the limit
A.2 without actually proving its existence!

Theorem A.2.9. For a < e, n! ≺
√

n
(

n
a

)n, and n! �
√

n
(

n
a

)n, for a > e.

Proof.

lim
n→∞

n!
√

n
(

n
a

)n = lim
n→∞

√
n
(

n
e

)n
√

n
(

n
a

)n
= lim

n→∞

(a

e

)n

Theorem A.2.10.
∑n−m

i=0
1
i! ∈ [1, e), 0 ≤ m ≤ n.

150 c©2003 Steven Louis Davis

Proof. For m = 0,
∑n−m

i=0
1
i! =

∑n
i=0

1
i! ↗n e.

Theorem A.2.11.
∑n−m

k=0

(
n−m

k

)
k! � (n−m)!.

Proof.

n−m∑
k=0

(
n−m

k

)
k! = (n−m)!

n−m∑
k=0

1
(n−m− k)!

= (n−m)!
n−m∑
i=0

1
i!

, i = n−m− k

More Sums 151

A.3 More Sums

Theorem A.3.1.
∑m

i=1 i3 =
[

m(m+1)
2

]2
Proof.

Use Lemma 1.7.1 and Theorem 1.7.2

Theorem A.3.2.
∑m

i=1 iai = a
(a−1)2 ([m(a− 1)− 1]am + 1)

Proof. Use Lemma 1.7.1 and Theorem 1.7.3

A.3.1 Polygeometric Sums

A simple technique is used to derive sums of the form
∑n

i=1 imai for m > 0
beginning from the simple geometric sum

∑n
i=1 ai.

Lemma A.3.1.
n∑

i=1

ai =
an+1 − a

a− 1

Lemma A.3.2. For m > 0,

n∑
i=1

imai = a
d

da

[
n∑

i=1

im−1ai

]

Proof.

n∑
i=1

imai =
n∑

i=1

(im−1a)iai−1

=
n∑

i=1

(im−1a)
d

da
[ai]

= a

n∑
i=1

im−1 d

da
[ai]

= a
n∑

i=1

d

da
[im−1ai]

= a
d

da

[
n∑

i=1

im−1ai

]

Denoting by Sm the sum
∑n

i=1 imai and noting that S0 = an+1−a
a−1 , one might

attempt a general formula for Sm based on repeated application of the formal
differential operator a d

da as this appears redilly obtainable.

152 c©2003 Steven Louis Davis

To illustrate:

Sm = a
d

da
[Sm−1]

= a
d

da

[
a

d

da
[Sm−2]

]
=
(

a
d

da

)[2]

[Sm−2]

=
(

a
d

da

)[3]

[Sm−3]

...

=
(

a
d

da

)[m]

[S0]

=
(

a
d

da

)[m] [
an+1 − a

a− 1

]

This however is not of immediate practical use as the composition
(
a d

da

)[m]

becomes quite a complex differential operator as m grows. One can see the first
four of these in the following illustration:

Sm =
(

a
d

da

)
[Sm−1]

=
(

a
d

da
+ a2 d2

da2

)
[Sm−2]

=
(

a
d

da
+ a(a + 2)

d2

da2
+ a2 d3

da3

)
[Sm−3]

=
(

a
d

da
+ a(3a + 4)

d2

da2
+ a2(a + 5)

d3

da3
+ a3 d4

da4

)
[Sm−4]

More Sums 153

One may thus be contented with applying lemma A.3.2 directly to derive
the first few poly-geometric sums.

Theorem A.3.3.
n∑

i=1

iai =
a

(a− 1)2
([n(a− 1)− 1]an + 1)

Proof.
n∑

i=1

iai = a
d

da

[
n∑

i=1

ai

]

= a
d

da

[
an+1 − a

a− 1

]
= a

(
[a− 1][(n + 1)an − 1]− [an+1 − a]

[a− 1]2

)
=

a

(a− 1)2
(
[a− 1][n + 1]an − [a− 1]− an+1 + a

)
=

a

(a− 1)2
(
[a− 1][n + 1]an + 1− an+1

)
=

a

(a− 1)2
([(a− 1)(n + 1)− a]an + 1)

=
a

(a− 1)2
([(a− 1)n + a− 1− a]an + 1)

=
a

(a− 1)2
([(a− 1)n− 1]an + 1)

=
a

(a− 1)2
([n(a− 1)− 1]an + 1)

Theorem A.3.4.
n∑

i=1

i2ai =
a

(a− 1)3
([

(n[a− 1]− 1)2 + a
]
an − a− 1

)
Proof.

n∑
i=1

i2ai = a
d

da

[
n∑

i=1

iai

]

= a
d

da

[
a

(a− 1)2
([n(a− 1)− 1] an + 1)

]
...

=
a

(a− 1)3
([

(n[a− 1]− 1)2 + a
]
an − a− 1

)

154 c©2003 Steven Louis Davis

Theorem A.3.5.

n∑
i=1

i3ai =
a

(a− 1)4
([

n3a3 − (3n3 + 3n2 − 3n + 1)a2 + (3n3 + 6n2 − 4)a− (n + 1)3
]
an + a2 + 4a + 1

)
The author has yet to find the time to compute the formula for

∑n
i=1 i4ai,

the formula for
∑n

i=1 i3ai having been computed at the cost of several hours of
algebraic manipulation. At this point one might desire to employ a symbolic
language such as scheme to automate the differentiation and simplification pro-
cess.

The first two poly-geometric sums appear regularly in the analysis of recur-
rences deriving from computer algorithms, usually in the form

∑n
i=1 im2i, that

is with the base a = 2.

Corollary A.3.1.
n∑

i=1

i2i = (n− 1)2n+1 + 2

Corollary A.3.2.

n∑
i=1

i22i =
(
(n− 1)2 + 2

)
2n+1 − 6

Corollary A.3.3.

n∑
i=1

i32i =
(
(n− 1)3 + 6n− 14

)
2n+1 + 26

Limits of Sums 155

A.4 Limits of Sums

Theorem A.4.1 (Geometric Series). For |a| < 1, lim
n→∞

∑m
i=0 ai = 1

1−a .

Proof. Using Theorem 1.7.3 we have

lim
n→∞

m∑
i=0

ai = lim
n→∞

am+1 − 1
a− 1

=
−1

a− 1

Theorem A.4.2.
∑m

i=0
ai

i! −→ ea.

Proof. This is the statement of convergence of the Taylor Series for ea expanded
about 0, also called a McLauren Series.

Corollary A.4.1.
∑m

i=0
1
i! −→ e.

Theorem A.4.3 (Harmonic Series).
∑m

i=1
1
i −→∞.

Proof.

2k∑
i=1

1
i

= 1 +
2k∑
i=2

1
i

≥ 1 +
k∑

j=0

2j 1
2j+1

= 1 +
k∑

j=0

1
2

= 1 +
k + 1

2

Thus

lim
n→∞

m∑
i=1

1
i

= lim
n→∞

2k∑
i=1

1
i

≥ lim
n→∞

1 +
k + 1

2
= ∞

Theorem A.4.4 (Alternating Harmonic Series).
∑m

i=1
(−1)i+1

i −→ ln(2).

156 c©2003 Steven Louis Davis

Proof.

Theorem A.4.5. ln(m + 1) <
∑m

i=1
1
i < ln(m) + 1.

Proof.

Appendix B

General Solution of
Elementary Recurrences

Functional iteration is employed in algorithm analysis to characterize and solve
recursively defined functions, where it takes on a decidedly less analytical flavor
since there is no true limiting behavior, the number of iterations always being
finite. None the less it proves to be an interesting subject for general investiga-
tion yielding some important results in the theory of order classification. Here
a more direct approach to the so called ’master method’ of solving elementary
recurrence equations, those of the form f(n) = g(n) + af(n/b), is given in a
new and much more general context. The result is extended to all functions of
the form f(n) = g(n) + h(n)f(β(n)), where β can represent almost any func-
tion used to yield diminished arguments. The result is then used to justify the
simplification of g for the purpose of order classification of f .

B.1 Terminal Compositions

iterated composition

Denote the m-fold application of a function β(n) by β[m](n), that is,

β[m](n) = β(β(β(...β(n)...))),m− 1 compositions of β.

More formally,

Definition B.1.1.

β[m](n) =

{
n , m = 0
β(β[m−1](n)) , m ≥ 1

157

158 c©2003 Steven Louis Davis

iterated composition of contractions

Let β be defined onN+ = {1, 2, 3, ...} (the subset of the natural numbersN = {0, 1, 2, 3, ...}
not including 0) with values also in N+. β is called a dilation if β(n) > n for
all n, and a contraction if β(n) < n for all n > 1. For a contraction β(1) = 1 is
required.

The remainder is concerned only with contractions and the behavior of their
iterates. These play an important role in the description of some of the extreme
representatives of the order hierarchy and also in the definition of recurrences.
Two of the most common examples encountered within recurrences are given
by:

β(n) =

{
n− 1 , n > 1,
1 , n = 1,

and

β(n) =

{
bn

2 c , n > 1,
1 , n = 1.

degree of terminal composition

Of particular interest is how many applications of β are required to yield the
base value n0 = 1, as reaching the base value terminates the nontrivial behavior
of iterates1. Any expression of the form β[i](n) = n0 is referred to as a ter-
minal composition. For the first terminal composition β[i](n) the number i of
applications is called degree of terminal composition.

The symbol β∗(n) will be used to denote this minimal number of applica-
tions:

β∗(n) = min {i ≥ 0 : β[i](n) = n0}
For the examples above β∗(n) = n− 1 and β∗(n) = log2(n)2, respectively. For
the first of these all integer values from 1 to n− 1 are assumed by the sequence
of iterates

β(n) = n− 1,

β[2](n) = n− 2,

β[3](n) = n− 3,

...

β[n−1](n) = 1.

For the second however the sequence has gaps and only for n in the lattice Nβ

of inverse compositions,

Nβ = {1, β[−1](1), β[−2](1), . . . , },
1 (β[i](n))∞i=0 is a stationary sequence
2for n a power of 2

General Solution of Elementary Recurrences 159

are exact results obtained. For convenience it is preferred to work within Nβ .
The previous examples are easily generalized for b > 1. First for

β(n) =

{
n− b , n > b

1 , n ≤ b,

one has:
Nβ = {1 + nb : n ≥ 0},

and for n ∈ Nβ ,

β∗(n) =
n− 1

b
.

Also, for

β(n) =

{
bn

b c , n > b

1 , n ≤ b,

one has:
Nβ = {bn : n ≥ 0},

and for n ∈ Nβ ,
β∗(n) = logb(n).

Another interesting example is given by:

β(n) =

{
blogb(n)c , n > b

1 , n ≤ b

for which
Nβ = {1, b, bb, bbb

, bbbb

, . . .},

and for n ∈ Nβ ,
β∗(n) = log∗b (n).

properties of terminal compositions

The following properties of β∗ are evident:

β∗(1) = 0

β∗(β[i](n)) = β∗(n)− i

β∗(β[−i](n)) = β∗(n) + i

β∗(β[i](n)) = β∗(n)− i

β∗(β[β∗(n)−i](n)) = i

β[β∗(n)+i](n) = 1, for i ≥ 0

β[β∗(n)−i](n) = β[−i](1) (B.1)

160 c©2003 Steven Louis Davis

β[i](n) = β[i−β∗(n)](1)

The following characterizations of the initial segments of Nβ provide some
flexibility in the indexing of sums:

Nβ ∩ [1, n] =

{β[i](n) : i ∈ N ∩ [0, β∗(n)]}

{β[β∗(n)−i](n) : i ∈ N ∩ [0, β∗(n)]}

{β[−i](1) : i ∈ N ∩ [0, β∗(n)]}

B.2 General Solution Of Elementary Recurrences

elementary recurrence equations

A class of simple recurrence equations commonly occurring in elementary al-
gorithm analysis is now characterized. These are the functions f characterized
completely for nonnegative nondecreasing functions g and h ' 1, and contrac-
tion β, by

f(n) =

{
g(n) + h(n)f(β(n)), n > 1,

1, n = 1.
(B.2)

Theorem B.2.1. For n ∈ Nβ,

f(n) =
β∗(n)∑
i=0

g(β[i](n))
i−1∏
j=0

h(β[j](n)).

Proof. Let fβ(n) denote the sum defined on Nβ and without loss of generality
assume g(1) = 1. Proof is by induction on Nβ . Since β∗(1) = 0 it follows that

General Solution of Elementary Recurrences 161

fβ(1) = g(1) = f(1). Now assume fβ(m) = f(m) for m ∈ Nβ . Then

fβ(β[−1](m)) =
β∗(β[−1](m))∑

i=0

g(β[i](β[−1](m)))
i−1∏
j=0

h(β[j](β[−1](m)))

= g(β[−1](m)) +
β∗(m)+1∑

i=1

g(β[i−1](m))
i−1∏
j=0

h(β[j−1](m))

= g(β[−1](m)) +
β∗(m)∑
k=0

g(β[k](m))
k∏

j=0

h(β[j−1](m)) (k = i− 1)

= g(β[−1](m)) + h(β[−1](m))
β∗(m)∑
k=0

g(β[k](m))
k∏

j=1

h(β[j−1](m))

= g(β[−1](m)) + h(β[−1](m))
β∗(m)∑
k=0

g(β[k](m))
k−1∏
p=0

h(β[p](m)) (p = j − 1)

= g(β[−1](m)) + h(β[−1](m))fβ(m)

= g(β[−1](m)) + h(β[−1](m))f(m)

= f(β[−1](m))

alternate forms for fβ

In the sequel it is convenient to denote the product
∏i−1

j=0 h(β[j](n)) by Hi(n).
Observe that the sum above includes the empty product H0(n) ≡ 1. A simple
change of variable together with B.1 provides another useful form:

fβ(n) =
β∗(n)∑
i=0

g(β[i](n))Hi(n)

=
β∗(n)∑
i=0

g(β[β∗(n)−i](n))Hβ∗(n)−i(n)

=
β∗(n)∑
i=0

g(β[−i](1))Hβ∗(n)−i(n)

(B.3)

manipulations of Hi(n)

Lemma B.2.1. Hi(n) = h(β[i−1](n))Hi−1(n).

Lemma B.2.2. Hi(n) = h(β[i−1](n))
h(β[−1](n))

Hi(β[−1](n)).

162 c©2003 Steven Louis Davis

Proof.

h(β[−1](n))Hi(n) = h(β[−1](n))
i−1∏
j=0

h(β[j](n))

= h(β[−1](n))
i−2∏
j=0

h(β[j](n))h(β[i−1](n))

= h(β[−1](n))
i−1∏
k=1

h(β[k−1](n))h(β[i−1](n))

=
i−1∏
k=0

h(β[k−1](n))h(β[i−1](n))

=
i−1∏
k=0

h(β[k](β[−1](n)))h(β[i−1](n))

= Hi(β[−1](n))h(β[i−1](n))

Lemma B.2.3. Hi(β[−1](n)) = h(β[−1](n))Hi−1(n) = h(β[−1](n))
h(β[i−1](n))

Hi(n).

Lemma B.2.4. Hi−1(β[−1](n)) = h(β[−1](n))
h(β[i−2](n))

Hi−1(n) = h(β[−1](n))
h(β[i−1](n))h(β[i−2](n))

Hi(n).

simple bounds

Before making use of theorem B.2.1 it is necessary to justify the use of the
subsequential lattice Nβ in characterizing the order of f .

Rationally Bounded Functions

Definition B.2.1. A non-decreasing function f is rationally bounded on a se-
quence (ni)∞i=i0

if there is a positive number b > 0 such that for all i, f(ni+1) ≤
bf(ni).

Rationally bounded functions on geometric sequences are sometimes referred
to as ‘smooth’. If the sequence is understood reference is simply made to the
function as ‘rationally bounded’. In particular, for f given by B.2, f is under-
stood to be rationally bounded on the sequence Nβ . Most often of concern are
asymptotically rationally bounded functions which are defined with the usual
asymptotic extension. As with other asymptotic properties these are often re-
ferred to as rationally bounded ‘eventually’. It should be clear that both sum
and product of rationally bounded functions are rationally bounded. Also for
any contraction β, β∗ is rationally bounded.

Lemma B.2.5. For nondecreasing rationally bounded f on {1, c, c2, c3, ...}, c >
1, and any integer k ≥ 1, f(n + k) � f(n).

General Solution of Elementary Recurrences 163

Proof. For n > d k
c−1e find i such that ci−1 ≤ n < ci. Since nc > n + k one has

f(n + k) ≤ f(nc) ≤ f(ci+1) ≤ b2f(ci−1) ≤ b2f(n).

Lemma B.2.6. Let f, g be eventually non-decreasing functions. If g is even-
tually rationally bounded on a sequence (ni)i and f(ni) � g(ni) (f and g are
‘interlaced’), then f � g.

Proof. Without loss of generality assume f and g are non-decreasing, that g is
rationally bounded, and that there is c1 > 0 such that f(ni) ≤ c1g(ni). Choose
c2 > 0 such that g(ni+1) ≤ c2g(ni). Given n, find i0 such that ni0 ≤ n < ni0+1.
Then f(n) ≤ f(ni0+1) ≤ c1g(ni0+1) ≤ c1c2g(ni0) ≤ c1c2g(n).

Lemma B.2.7. For h ' 1, fβ is eventually rationally bounded on Nβ.

Proof. Let c > 0 such that h(n) ≥ c for large n. Then

fβ(β(n)) =
fβ(n)− g(n)

h(n)

≤ 1
c2

fβ(n).

Theorem B.2.2. For f given by B.2 with h ' 1, f ' fβ.

The crudest of bounds are immediately obtained by bounding the terms and
factors appearing in fβ .

Theorem B.2.3. For h = 1, β∗g(β[12 β∗]) � f � β∗g.

Proof.

fβ(n) =
β∗(n)∑
i=0

g(β[i](n))

≤ (1 + β∗(n))g(n)

and,

fβ(n) ≥
1
2 β∗(n)∑

i=0

g(β[i](n))

≥ (1 +
1
2
β∗(n))g(β[12 β∗(n)](n))

Theorem B.2.4. For h 6≡ 1, g(β[12 β∗]h
1
2 β∗(β[12 β∗])) � f � ghβ∗ .

164 c©2003 Steven Louis Davis

Proof.

fβ(n) ≤ g(n)
β∗(n)∑
i=0

Hi(n)

≤ g(n)
β∗(n)∑
i=0

hi(n)

= g(n)
h1+β∗(n)(n)− 1

h(n)− 1

Also,

fβ(n) ≥
1
2 β∗(n)∑

i=0

g(β[i](n))Hi(n)

≥ g(β[12 β∗(n)](n))

1
2 β∗(n)∑

i=0

Hi(n)

≥ g(β[12 β∗(n)](n))

1
2 β∗(n)∑

i=0

hi(β[i−1](n))

≥ g(β[12 β∗(n)](n))

1
2 β∗(n)∑

i=0

hi(β[12 β∗(n)](n))

≥ g(β[12 β∗(n)](n))
h1+ 1

2 β∗(n)(β[12 β∗(n)])(n)− 1
h(β[12 β∗(n)](n))− 1

Theorem B.2.5. f � hβ∗(β[−1](1)).

Proof.

fβ(n) ≥ g(1)
β∗(n)∑
i=0

i−1∏
j=0

h(β[j](n))

≥ g(1)
β∗(n)∑
i=0

hi(β[i−1](n))

= g(1)
β∗(n)∑
i=0

hi(β[i−1−β∗(n)](1))

≥ g(1)
β∗(n)∑
i=0

hi(β[−1](1))

= g(1)
h1+β∗(n)(β[−1])− 1

h(β[−1](1))− 1

General Solution of Elementary Recurrences 165

familiar results

The following corollaries can usually be found in algorithm analysis text books
near theorems bearing names such as “Master Theorem”, or “Master Method”.
They all concern recurrences of the form

f(n) = g(n) + bf
(n

c

)
.

Since the recursive term bf
(

n
c

)
is arguably the most general characteristic of

divide and conquer algorithms, these deserve special attention.

Corollary B.2.1. For constant h(n) = b > 0,

fβ(n) =
β∗(n)∑
i=0

big(β[i](n))

= bβ∗(n)

β∗(n)∑
i=0

g(β[−i](1))
bi

.

Corollary B.2.2. For constant h(n) = b > 0, and β(n) = n
c , for c > 1,

f(n) �

{
g(n)logc(n), b = 1
g(n)nlogc(b), b 6= 1

Proof.

fβ(n) =
logc(n)∑

i=0

big
(n

ci

)

≤ g(n)
logc(n)∑

i=0

bi

For b = 1 the sum reduces to 1 + logc(n) and otherwise to b logc(n)−1
b−1 .

We next derive one particular example of these recurrences.

Example B.1. For f(n) = np + bf(n
c), f(n) '


nlogc(b) , b > cp,

np logc(n) , b = cp,

np , b < cp

From

166 c©2003 Steven Louis Davis

Corollary B.2.1 and for b 6= cp we have

f(n) '
logc(n)∑

i=0

bi
(n

ci

)p

= np

logc(n)∑
i=0

(
b

cp

)i

= np

([
b
cp

]logc(n)+1 − 1
b
cp − 1

)

=
cp

b− cp
np

(
b

cp
nlogc(

b
cp) − 1

)
=

cp

b− cp

(
b

cp
nlogc(b) − np

)
=

b

b− cp
nlogc(b) +

cp

cp − b
np

Now whether b > cp or b < cp determines which of the two terms is positive and
therefore dominant. If b = cp then

f(n) '
logc(n)∑

i=0

(cp)i
(n

ci

)p

=
logc(n)∑

i=0

np

= np(logc(n) + 1)

The trichotomy demonstrated by this example is actually characteristic of the
general divide and conquer recurrence as theorem B.2.6 will demonstrate. First
we need some preliminary results.

Lemma B.2.8. For f(n) = g(n) + bf(n
c), f(n) ' nlogc(b) +

∑logc(b)−1
i=0 big(n

ci).

Proof. Split off the last term of fβ .

Lemma B.2.9. For functions g1, g2, u, if g1(n) � g2(n), then g1(u(n)) �
g2(u(n)), and for any finite set I,

∑
i∈I g1(u(i)) �

∑
i∈I g2(u(i)).

The following theorem is a standard centerpiece of the theory of elementary
recurrences and is often called the ”Master Theorem”.

Theorem B.2.6. For f(n) = g(n) + bf(n
c),

f(n) '


nlogc(b) , g(n) � nlogc(b)−ε, ε > 0,

nlogc(b) log(n) , g(n) ' nlogc(b),

g(n) , g(n) � nlogc(b)+ε, ε > 0, bg(n
c) ≤ δg(n), δ < 1.

General Solution of Elementary Recurrences 167

Proof. For g(n) � nlogc(b)−ε the previous lemma gives

f(n) ' nlogc(b) +
logc(n)−1∑

i=0

big
(n

ci

)

� nlogc(b) +
logc(n)−1∑

i=0

bi
(n

ci

)logc(b)−ε

= nlogc(b)

1 + n−ε

logc(n)−1∑
i=0

(
b

clogc(b)−ε

)i


= nlogc(b)

1 + n−ε

logc(n)−1∑
i=0

(cε)i


= nlogc(b)

(
1 + n−ε

[
cε logc(n) − 1

cε − 1

])
= nlogc(b)

(
1 + n−ε

[
nε − 1
cε − 1

])
' nlogc(b),

establishing the first part. Next, for g(n) ' nlogc(b) we have

f(n) '
logc(n)∑

i=0

big
(n

ci

)

=
logc(n)∑

i=0

bi
(n

ci

)logc(b)

=
logc(n)∑

i=0

nlogc(b)

= nlogc(b)(logc(n) + 1)

Finally assuming g(n) � nlogc(b)+ε, ε > 0, and that bg(n
c) ≤ δg(n) for some δ <

1, we have g(n
c) ≤ d

b g(n), g(n
c2) ≤ (d

b)2g(n), and in general, g(n
ci) ≤ (d

b)ig(n),

168 c©2003 Steven Louis Davis

so that big(n
ci) ≤ dig(n) and

f(n) � nlogc(b) +
logc(n)−1∑

i=0

big
(n

ci

)

≤
logc(n)∑

i=0

dig(n)

≤ g(n)
∞∑

i=0

di

= g(n)
(

1
1− d

)
' g(n),

since nlogc(b) � g(n). To establish f � g, note that the sum
∑logc(n)

i=0 big
(

n
ci

)
is

bounded below by its first term g(n).

The following table adds to the list of elementary recurrences given in section
6.1. Most of the order results (third column) can now be more easily derived
with the aid of Theorems B.2.1 and B.2.2 even though exact solutions have been
provided in most cases. The last four recurrences do not fit the hypothesis of
Theorem B.2.2 and therefore no use of Theorem B.2.1 is justified for these. It is
interesting to note however that the solutions for these are all predicted by The-
orem B.2.1 none the less. This suggests that the hypothesis of Theorem B.2.2
could be relaxed. The last four examples in the table doubtfully correspond to
any meaningful algorithms and are included only for practice sake.

B.3 Further Applications

simplification of recurrences

fβ is now employed in the simplification of g. This can dramatically reduce the
difficulty of computations encountered during the order classification of f .

Consider two simple recurrences f1 and f2 sharing both h and β,

f1(n) =

{
g1(n) + h(n)f1(β(n)), n > 1
1, n = 1

f2(n) =

{
g2(n) + h(n)f2(β(n)), n > 1
1, n = 1

∗f(1) = 1
∗∗equality holds only for n in the lattice Nβ of of inverse compositions,

Nβ = {1, β[−1](1), β[−2](1), . . . , },
where β(n) ∈ {log(n), n

2
, n− 1, n

c
, n− c}.

General Solution of Elementary Recurrences 169

Table B.1: More Recurrences

f(n)∗ solution∗∗ order

16 1 + f(logc(n)) log∗c(n) + 1 log∗(n)

17 n + cf(logc(n)) log∗c(n)(log∗c(n) + 1) (log∗(n))2

18 logc(n) + f(n
c) 1

2 logc(n)(logc(n) + 1) + 1 log2(n)

19 logc(n) + cf(n
c) 1

(c−1)2

[
(c2 + 3c + 1)n− (c− 1) logc(n)− c)

]
n

20 n logc(n) + f(n
c) c

c−1

(
n logc(n) + c

(c−1)2 (1− n)
)

+ 1 n log(n)

21 n logc(n) + cf(n
c) 1

2 logc(n)(logc(n) + 1) + n n log2(n)

22 np + bf(n
c) b

b−cp nlogc(b) + cp

cp−bn
p nmax{p,logc(b)}, b 6= cp

23np + bf(n− c), b, c 6= 1 np(c
√

b)n

24 1 + npf(n
c) 1 + np

∑logc(n)−1
i=0

(
n

c
i+1
2

)ip

n
1
4 logc(n) ≺ f(n) ≺ nlogc(n)−1

25 n2 + nf(n− 1) n!
∑n−1

i=0
i+1
i! n!

26 1 + npf(n− 1) (n!)p
∑n

i=1
1

(i!)p (n!)p

27 1 + nnf(n− 1) (n!)n

With the aid of theorems B.2.1 and B.2.2, it is easy to show that the non-
strict order relationship between f1 and f2 is completely determined by that
between g1 and g2. We now obtain Lemma 6.3.1 more directly.

Theorem B.3.1. If g1 � g2 then f1 � f2.

Proof. Choose c1 > 0, and N such that g1(n) ≤ c1g2(n) for n ≥ N . Let

iN = max{i ≥ 0 : β[−i](1) < N},

c2 ≥ max

c1,

max
0≤i≤iN

g1(β[−i](1))

min
0≤i≤iN

g2(β[−i](1))

 ,

and N > N such that β∗(n) > iN for n ≥ N . For n ≥ N , using B.3, one then

170 c©2003 Steven Louis Davis

has

iN∑
i=0

g1(β[−i](1))Hβ∗(n)−i(n) ≤ max
0≤i≤iN

g1(β[−i](1))
iN∑
i=0

Hβ∗(n)−i(n)

≤ c2 min
0≤i≤iN

g2(β[−i](1))
iN∑
i=0

Hβ∗(n)−i(n)

≤ c2

iN∑
i=0

g2(β[−i](1))Hβ∗(n)−i(n)

hence

(f1)β(n) =
β∗(n)∑
i=0

g1(β[−i](1))Hβ∗(n)−i(n)

=
iN∑
i=0

g1(β[−i](1))Hβ∗(n)−i(n) +
β∗(n)∑

i=iN+1

g1(β[−i](1))Hβ∗(n)−i(n)

≤ c2

iN∑
i=0

g2(β[−i](1))Hβ∗(n)−i(n) + c1

β∗(n)∑
i=iN+1

g2(β[−i](1))Hβ∗(n)−i(n)

≤ c2

β∗(n)∑
i=0

g2(β[−i](1))Hβ∗(n)−i(n)

= c2(f2)β(n)

Corollary B.3.1. If g1 � g2 then f1 � f2.

Corollary B.3.2. If g1 ' g2 then f1 ' f2.

A simple counterexample serves to show that theorem B.3.1 does not extend
to a similar theorem on strict order relationship. For g1(n) = 1, g2(n) = n, and
shared h(n) = 2, and β(n) = n − 1, f1 and f2 have the same order but g1 and
g2 do not.

Appendix C

More Fibonacci Algorithms

The classical Fibonacci sequence (based on summing two terms) is defined by:

Fn =

{
n , n = 0, 1,

Fn−1 + Fn−2 , n > 1.

We have already seen that the solution obtained by implementing this recur-
rence directly with a recursive function is at least exponential, while the natural
(dynamic programming) algorithm is first order. For better (or at least more
interesting) solutions more problem analysis is in order. The direct implemen-
tation of De Moivre’s formula,

Fn =

(
1+
√

5
2

)n

−
(

1−
√

5
2

)n

√
5

combined with a fast (logarithmic time) algorithm for integer exponentiation,
Figure 6.3, gives a logarithmic time solution, Figure C.1.

int dem_fib(int n){
float r5=sqrt(5),b1=(1+r5)/2,b2=(1-r5)/2;;
return (fexp(b1,n)-fexp(b2,n))/r5;
}

Figure C.1: De Moivre’s Algorithm

Though in terms of running time this algorithm is as superior to the dynamic
algorithm as the dynamic is to the recursive algorithm, one usually prefers an
integer only algorithm. This still does not put a logarithmic time solution out
of reach however, since it is known that any linear recurrence can be solved in
logarithmic time. Again, the log time characteristic will come from an expo-
nentiation algorithm applied this time to matrices. Any linear recurrence can

171

172 c©2003 Steven Louis Davis

be specified by a square matrix. An order k linear recurrence has the form

rn = akrn−k + ak−1rn−k+1 + · · ·+ a2rn−2 + a1rn−1 + a0

where a0, a1, . . . , ak are constants. For simplicity we consider only homogeneous
recurrences, that is a0 = 0, with fundamental sequences [first k terms] defined
by rk−1 = 1 and ri = 0, for i < k−1. The first two Fibonacci numbers are then
a fundamental sequence for the second order homogeneous linear recurrence
defined by a1 = a2 = 1. To define a matrix for any such recurrence rn, let
R = (ρij)k

i,j=1 where

ρi,i+1 = 1, i ≤ k

ρk,j = ak−j+1, 1 ≤ j < k

ρi,j = 0, otherwise

When this matrix is repeatedly applied to the vector X = (0, 0, . . . , 0, 1), we
obtain a vector of k consecutive elements of the sequence generated by the
recurrence.

R1X = (0, 0, 0, . . . , 0, 1, a1) = (r1, r2, . . . , rk)

R2X = (0, 0, . . . , 0, 1, a1, a1 + a2) = (r2, r3, . . . , rk, rk+1)

R3X = (0, . . . , 0, 1, a1, a1 + a2, a2 + a3) = (r3, r4, . . . , rk, rk+1, rk+2)

and in general,

Rn−kX = (rn−k, rn−k+1, . . . , rn−2, rn−1).

Since we can find rn as the kth component of Rn−k+1X, the problem is reduced
to matrix exponentiation which can be done in log time with a suitable gener-
alization of the fast exponentiation algorithm. For the Fibonacci numbers, we
use

R =

0 1

1 1

 ,

and then,

Rn−1X = (Fn−1, Fn), n > 1.

We obtain the algorithm in Figure C.2
where M2X2 is a suitably defined matrix class with log time exponentiation
operator exp(int). We can get a measure of the running time of this algorithm
by counting the number of full integer multiplications used for each of the matrix
multiplications [8 for 2x2 matrices] and multiplying by the time tm required for

More Fibonacci Algorithms 173

int fast_fib(int n){
M2X2 R=(0,1,1,1);
R=R.exp(n);
return R[1][2];
}

Figure C.2: Fast Fibonacci Algorithm using Matrix Exponentiation

integer multiplication, the time spent on mod2, *2, and /2 operations as well
as additions being insignificant. Since the exp method will run its loop between
log2(n) and 2 log2(n) times (see Figure 6.3), we have T (n) = C log2(n) where
8tm ≤ C ≤ 16tm.

The following well known algorithm refines this approach by reducing the
number of multiplications on average. The cost in this case seems to be algo-
rithm clarity.

int obscure(int n){
int i=1,j=0,k=0,h=1,t;
while(n>0){

if(n%2){
t=j*h;
j=i*h+j*k+t;
i=i*k+t;
}

t=h*h;
h=2*k*h+t;
k=k*k+t;
n=n/2;
}

return j;
}

Figure C.3: Obscure Fast Fibonacci Algorithm

Here one has about a 100 percent improvement, 3tm ≤ C ≤ 7tm. We have
illustrated remarkable improvements in speed at the expense of some analysis
and code complexity. The last and most efficient algorithm in particular seems
almost incomprehensible and requires some treachery to understand. It is our
goal here to illustrate the derivation of an algorithm with the same order which
is both simpler and more efficient, the efficiency being gained by using about
half as many full multiplications. We start with the demonstration of a property
of Fibonacci numbers which we call the Lucas formula. For any n,

F2n = Fn(Fn+1 + Fn−1).

174 c©2003 Steven Louis Davis

This states that any evenly indexed Fibonacci number is the product of the
Fibonacci and Lucas numbers at half the index value. [the sum Ln = Fn+1 +
Fn−1 is the nth Lucas number]
To see this observe that

Fm = Fm−1 + Fm−2

= Fm−2 + Fm−3 + Fm−2

= 2Fm−2 + Fm−3

= 2(Fm−3 + Fm−4) + Fm−3

= 3Fm−3 + 2Fm−4

= 3(Fm−4 + Fm−5) + 2Fm−4

= 5Fm−4 + 3Fm−5

= 5(Fm−5 + Fm−6) + 3Fm−5

= 8Fm−5 + 5Fm−6

One immediately notices the emergence of the Fibonacci sequence in the coef-
ficients of the two terms in each of the reduced expressions. In fact, for k > 1,
we have

Fm = Fk+1Fm−k + FkFm−k−1.

Letting m = 2n, and k = n yields

F2n = Fn+1F2n−n + FnF2n−n−1

= Fn+1Fn + FnFn−1

= Fn(Fn+1 + Fn−1)

We may now construct a simple Fibonacci algorithm for dyadic indices.
For n = 2k, we start with F1 and apply the formula repeatedly to obtain
F21 , F22 , . . . , F2k . To obtain F2i however, we need a couple of Fibonacci num-
bers for each preceding dyadic index ±1, that is, F2i requires F[2i−1], and both
F[2i−1±1].

Since F2i requires 3 previous elements of the sequence, it would seem that
each of these requires its own 3 for a total of 9. The method employed uses the
fact that having a pair of consecutive Fibonacci numbers is enough to regenerate
their double-indexed successors using Lucas formula. If we have Fi and Fi+1,
then we can obtain F2i and F2(i+1). First use Fi and Fi+1 to recover the
neighboring numbers Fi−1 = Fi+1−Fi and Fi+2 = Fi +Fi+1. Next apply Lucas
formula to obtain F2i = Fi(Fi−1 + Fi+1) and F2i+2 = Fi+1(Fi + Fi+2). Finally
recover the neighbor F2i+1 = F2i+2 − F2i. More simply, it suffices to keep a set
of four consecutive Fibonacci numbers y1, y2, y3, and y4 which after k updates
will yield y2 = F2k . At each iteration i = 0, 1, . . . , k, y2 will be the value of F2i .
Given

More Fibonacci Algorithms 175

y1 = F[2i−1]

y2 = F2i

y3 = F[2i+1]

y4 = F[2i+2]

each iteration makes the following changes:

y1 = y3 − y2

y2 = y2(y1 + y3) = F[2i+1] = F2i(F[2i−1] + F[2i+1])

y3 = y4 − y2

y4 = y3(y2 + y4) = F[2i+1+2] = F[2i+1](F2i + F[2i+2])

The order of computation is y4, y2, y3, y1. First y4, and y2 are computed using
Lucas’ formula and then y3, y1 are computed from the new values of y4, y2. With
yj initialized to Fj for j = 1, 2, 3, 4; that is, y1 = 1, y2 = 1, y3 = 2, and y4 = 3,
the kth iteration produces y2 = F2k . The algorithm of figure C.4 is obtained.

int dyadic_fibonacci(int k){ // computes F_{2^k}
int y1=1,y2=1,y3=2,y4=3;
while(k>0){

y4=y3*(y2+y4);
y2=y2*(y1+y3);
y3=y4-y2;
y1=y3-y2;
k--;
}

return y2;
}

Figure C.4: Dyadic Fibonacci Algorithm

An obvious extension for generating any Fn is to generate the largest dyadic
fibonacci number F2k where 2k ≤ n and then use the dynamic algorithm to
span the gap from 2k to n. Unfortunately this gives a linear time algorithm
in the worst case because the largest dyadic index can be nearly n/2 requiring
the dynamic algorithm to make up the other n/2 numbers in linear time. For
example the computation of F2047 requires only 10 iterations of the dyadic loop
to find F210 = F1024 but then requires 1023 iterations of the dynamic algorithm.
This is in fact the worst case example of a non-dyadic integer for the algorithm.

To successfully apply this dyadic strategy for any value of n, one would need
to know the starting point p [possibly a number other than 1] and the number of
iterations k required to bring pk to the value n. For example 5 iterations applied

176 c©2003 Steven Louis Davis

to p = 3 would be sufficient for the computation of F243. The initializations of
y1, y2, y3, and y4 would require y2 = F3 instead of F2:

y1 = F2 = 1
y2 = F3 = 2
y3 = F4 = 3
y4 = F5 = 5

We then have an algorithm to compute Fpk for p-adic Fibonacci indices
n = pk, but of course not every integer is expressible this way. For indices
in general we use a hybrid approach. Starting from an arbitrary index n we
repeatedly anticipate the application of Lucas’ formula from the top down. For
example, to compute F37 one would apply Lucas’ formula to obtain F36 from F18

and then shift the y variables. F18 can be found from F9, F9 from F8 by another
shift, F8 from F4, and F4 from F2. Denoting the operations of applying Lucas’
formula and shifting by L and S respectively, the sequence of operations for this
example would be L,L,S,L,S,L. This top down approach could be implemented
by using a stack to keep track of the points where a shift is needed as does the
algorithm in Figure C.5.

If, however, one closely examines the stack contents, it becomes apparent
that they follow the binary encoding of n. One can therefore do away with the
stack anticipator and simply mask the bits of n. The algorithm of Figure C.6
follows.

The reader will no doubt recognize some of the structure of the obscure
algorithm here. The only advantage is that the number of full multiplications
has now been reduced to exactly two per iteration. This represents a 33 to 70
percent improvement over the obscure solution.

More Fibonacci Algorithms 177

int fib(int n){
int y1=1,y2=1,y3=2,y3=3,p=n,q;stack s;
while(p>2)

if(p%2)
s.push(--p);

else
p/=2;

while(p!=n){
if(s.empty())

q=n;
else

q=s.pop();
while(p<q){

y4=y3*(y2+y4);
y2=y2*(y1+y3);
y3=y4-y2;
y1=y3-y2;
p*=2;
}

if(p==n)
return y2;

else{
y1=y2;
y2=y3;
y3=y4;
y4=y2+y3;
p++;
}

}
return y2;
}

Figure C.5: Hybrid Fibonacci Algorithm using a Stack

178 c©2003 Steven Louis Davis

int fib(int n){
int y1=0,y2=1,y3=1,y4=2,m=pow(2,floor(log(n)));
while(m<=n) m*=2; m/=2;
while(m>1){

m/=2;
y4=y3*(y2+y4);
y2=y2*(y1+y3);
y3=y4-y2;
y1=y3-y2;
if(m&n){

y1=y2;
y2=y3;
y3=y4;
y4=y2+y3;
}

}
return y2;
}

Figure C.6: Hybrid Fibonacci Algorithm using a mask

	Mathematical Preliminaries
	Logs
	Derivatives
	Limits
	0-limits of nonnegative non-increasing sequences
	Limits and Logs
	Limits and Derivatives

	Combinatorics
	Graph Theory
	Trees
	Representation in Code

	Probability
	Mathematical Expectation
	Change of Variable

	Sums
	Induction

	I Order
	Order Comparison
	Equivalent Order
	Inferior Order
	Non-Strict Order
	Traditional Notation
	Bounding Techniques
	Delay and Invariance
	Order Hierarchy
	Polylogs and Powers
	Iterated Log Subhierarchy
	Polynomials and Exponentials
	Exotic Order Comparisons
	Ackerman's Function
	Collected Comparisons

	Existence of the Laplace Transform

	II Algorithm Analysis
	Time Complexity Analysis
	Average Case Time Complexity Analysis

	Greedy Selection
	Single Source Shortest Paths
	Dijkstra's Algorithm

	Minimal Spanning Trees
	Prim's Algorithm
	Kruskals's Algorithm

	Dynamic Programming
	Recursively Defined Solutions
	Calculating Combinations
	Shortest Paths Revisited
	Traveling Salesman Problem
	Order of Sequenced Matrix Multiplication

	Divide and Conquer
	Constructive Induction
	Fast Exponentiation
	Sorting Arrays
	Mergesort
	Selectionsort
	Quicksort
	Heapsort

	Simplifying Recurrences
	Fast Fourier Transform
	The Discrete Fourier Transform
	The Fast DFT Algorithm

	Exploiting Associations with Recursion
	Large Integer Arithmetic
	Strassens Matrix Multiplication

	III Appendices
	Mathematical Reference
	Discrete Fourier Transform
	Binomial Coefficients
	More Sums
	Polygeometric Sums

	Limits of Sums

	General Solution of Elementary Recurrences
	Terminal Compositions
	General Solution Of Elementary Recurrences
	Further Applications

	More Fibonacci Algorithms

